Loading…

How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?

Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation t...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-03, Vol.14 (6), p.1305
Main Author: Williams, Christopher R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713
cites cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713
container_end_page
container_issue 6
container_start_page 1305
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Williams, Christopher R.
description Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.
doi_str_mv 10.3390/rs14061305
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_49639e81353a4215a9204b1cdf334275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_49639e81353a4215a9204b1cdf334275</doaj_id><sourcerecordid>2642461883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRsNRe_ARBb8Jq_u_mJKVUW6gobdFjiNlsm9JuapJV--1NrahzmWH48eY9JsvOEbwmRMAbHxCFHBHIjrIOhgXOKRb4-N98mvVCWMFUhCABaSebjdwHeGj1EvRjNE2ronUNGH5G2yxaG5YmgM0mf1HvBjwbH61W6_UOPDnb7AkwVZXyYGpi6xsws4tGrcPtWXZSp256P72bze-G88Eonzzejwf9Sa5JWcaccVQyg4uaF6JCTHEmhEAVQTWvMGMF0a9II2VURbXAHNFS6BrjimJqeIFINxsfZCunVnLr7Ub5nXTKyu-F8wup9o7XRlLBiTAlIowoitMtgSFN6lVNCMUFS1oXBy0XopVB22j0UrumMTrKZJOXcA9dHqCtd2-tCVGuXMqdIkrMk6uUpySJujpQ2rsQvKl_rSEo93-Sf38iXz4Igb0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642461883</pqid></control><display><type>article</type><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><source>Publicly Available Content Database</source><creator>Williams, Christopher R.</creator><creatorcontrib>Williams, Christopher R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14061305</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atmospheric attenuation ; Atmospheric radiation ; attenuation ; Configuration management ; ENVIRONMENTAL SCIENCES ; Estimates ; Excavation ; extinction cross-section ; Millimeter waves ; Precipitation ; Radar ; Radar attenuation ; Radar measurement ; Rain ; raindrop backscattering cross-section ; raindrop size distribution ; Raindrops ; Remote sensing ; Signal to noise ratio ; Simulation ; specific attenuation ; T-matrix particle scattering ; Wave attenuation ; Wavelengths</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-03, Vol.14 (6), p.1305</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</citedby><cites>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</cites><orcidid>0000-0001-9394-8850 ; 0000000193948850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642461883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642461883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><title>Remote sensing (Basel, Switzerland)</title><description>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</description><subject>Atmospheric attenuation</subject><subject>Atmospheric radiation</subject><subject>attenuation</subject><subject>Configuration management</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimates</subject><subject>Excavation</subject><subject>extinction cross-section</subject><subject>Millimeter waves</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar attenuation</subject><subject>Radar measurement</subject><subject>Rain</subject><subject>raindrop backscattering cross-section</subject><subject>raindrop size distribution</subject><subject>Raindrops</subject><subject>Remote sensing</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>specific attenuation</subject><subject>T-matrix particle scattering</subject><subject>Wave attenuation</subject><subject>Wavelengths</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRsNRe_ARBb8Jq_u_mJKVUW6gobdFjiNlsm9JuapJV--1NrahzmWH48eY9JsvOEbwmRMAbHxCFHBHIjrIOhgXOKRb4-N98mvVCWMFUhCABaSebjdwHeGj1EvRjNE2ronUNGH5G2yxaG5YmgM0mf1HvBjwbH61W6_UOPDnb7AkwVZXyYGpi6xsws4tGrcPtWXZSp256P72bze-G88Eonzzejwf9Sa5JWcaccVQyg4uaF6JCTHEmhEAVQTWvMGMF0a9II2VURbXAHNFS6BrjimJqeIFINxsfZCunVnLr7Ub5nXTKyu-F8wup9o7XRlLBiTAlIowoitMtgSFN6lVNCMUFS1oXBy0XopVB22j0UrumMTrKZJOXcA9dHqCtd2-tCVGuXMqdIkrMk6uUpySJujpQ2rsQvKl_rSEo93-Sf38iXz4Igb0</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Williams, Christopher R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9394-8850</orcidid><orcidid>https://orcid.org/0000000193948850</orcidid></search><sort><creationdate>20220301</creationdate><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><author>Williams, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric attenuation</topic><topic>Atmospheric radiation</topic><topic>attenuation</topic><topic>Configuration management</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimates</topic><topic>Excavation</topic><topic>extinction cross-section</topic><topic>Millimeter waves</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar attenuation</topic><topic>Radar measurement</topic><topic>Rain</topic><topic>raindrop backscattering cross-section</topic><topic>raindrop size distribution</topic><topic>Raindrops</topic><topic>Remote sensing</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>specific attenuation</topic><topic>T-matrix particle scattering</topic><topic>Wave attenuation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Christopher R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1305</spage><pages>1305-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14061305</doi><orcidid>https://orcid.org/0000-0001-9394-8850</orcidid><orcidid>https://orcid.org/0000000193948850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-03, Vol.14 (6), p.1305
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_49639e81353a4215a9204b1cdf334275
source Publicly Available Content Database
subjects Atmospheric attenuation
Atmospheric radiation
attenuation
Configuration management
ENVIRONMENTAL SCIENCES
Estimates
Excavation
extinction cross-section
Millimeter waves
Precipitation
Radar
Radar attenuation
Radar measurement
Rain
raindrop backscattering cross-section
raindrop size distribution
Raindrops
Remote sensing
Signal to noise ratio
Simulation
specific attenuation
T-matrix particle scattering
Wave attenuation
Wavelengths
title How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Much%20Attenuation%20Extinguishes%20mm-Wave%20Vertically%20Pointing%20Radar%20Return%20Signals?&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Williams,%20Christopher%20R.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2022-03-01&rft.volume=14&rft.issue=6&rft.spage=1305&rft.pages=1305-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14061305&rft_dat=%3Cproquest_doaj_%3E2642461883%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642461883&rft_id=info:pmid/&rfr_iscdi=true