Loading…
How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?
Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation t...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-03, Vol.14 (6), p.1305 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713 |
container_end_page | |
container_issue | 6 |
container_start_page | 1305 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 14 |
creator | Williams, Christopher R. |
description | Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns. |
doi_str_mv | 10.3390/rs14061305 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_49639e81353a4215a9204b1cdf334275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_49639e81353a4215a9204b1cdf334275</doaj_id><sourcerecordid>2642461883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRsNRe_ARBb8Jq_u_mJKVUW6gobdFjiNlsm9JuapJV--1NrahzmWH48eY9JsvOEbwmRMAbHxCFHBHIjrIOhgXOKRb4-N98mvVCWMFUhCABaSebjdwHeGj1EvRjNE2ronUNGH5G2yxaG5YmgM0mf1HvBjwbH61W6_UOPDnb7AkwVZXyYGpi6xsws4tGrcPtWXZSp256P72bze-G88Eonzzejwf9Sa5JWcaccVQyg4uaF6JCTHEmhEAVQTWvMGMF0a9II2VURbXAHNFS6BrjimJqeIFINxsfZCunVnLr7Ub5nXTKyu-F8wup9o7XRlLBiTAlIowoitMtgSFN6lVNCMUFS1oXBy0XopVB22j0UrumMTrKZJOXcA9dHqCtd2-tCVGuXMqdIkrMk6uUpySJujpQ2rsQvKl_rSEo93-Sf38iXz4Igb0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642461883</pqid></control><display><type>article</type><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><source>Publicly Available Content Database</source><creator>Williams, Christopher R.</creator><creatorcontrib>Williams, Christopher R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14061305</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atmospheric attenuation ; Atmospheric radiation ; attenuation ; Configuration management ; ENVIRONMENTAL SCIENCES ; Estimates ; Excavation ; extinction cross-section ; Millimeter waves ; Precipitation ; Radar ; Radar attenuation ; Radar measurement ; Rain ; raindrop backscattering cross-section ; raindrop size distribution ; Raindrops ; Remote sensing ; Signal to noise ratio ; Simulation ; specific attenuation ; T-matrix particle scattering ; Wave attenuation ; Wavelengths</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-03, Vol.14 (6), p.1305</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</citedby><cites>FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</cites><orcidid>0000-0001-9394-8850 ; 0000000193948850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642461883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642461883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1856805$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><title>Remote sensing (Basel, Switzerland)</title><description>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</description><subject>Atmospheric attenuation</subject><subject>Atmospheric radiation</subject><subject>attenuation</subject><subject>Configuration management</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Estimates</subject><subject>Excavation</subject><subject>extinction cross-section</subject><subject>Millimeter waves</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar attenuation</subject><subject>Radar measurement</subject><subject>Rain</subject><subject>raindrop backscattering cross-section</subject><subject>raindrop size distribution</subject><subject>Raindrops</subject><subject>Remote sensing</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>specific attenuation</subject><subject>T-matrix particle scattering</subject><subject>Wave attenuation</subject><subject>Wavelengths</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRsNRe_ARBb8Jq_u_mJKVUW6gobdFjiNlsm9JuapJV--1NrahzmWH48eY9JsvOEbwmRMAbHxCFHBHIjrIOhgXOKRb4-N98mvVCWMFUhCABaSebjdwHeGj1EvRjNE2ronUNGH5G2yxaG5YmgM0mf1HvBjwbH61W6_UOPDnb7AkwVZXyYGpi6xsws4tGrcPtWXZSp256P72bze-G88Eonzzejwf9Sa5JWcaccVQyg4uaF6JCTHEmhEAVQTWvMGMF0a9II2VURbXAHNFS6BrjimJqeIFINxsfZCunVnLr7Ub5nXTKyu-F8wup9o7XRlLBiTAlIowoitMtgSFN6lVNCMUFS1oXBy0XopVB22j0UrumMTrKZJOXcA9dHqCtd2-tCVGuXMqdIkrMk6uUpySJujpQ2rsQvKl_rSEo93-Sf38iXz4Igb0</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Williams, Christopher R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9394-8850</orcidid><orcidid>https://orcid.org/0000000193948850</orcidid></search><sort><creationdate>20220301</creationdate><title>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</title><author>Williams, Christopher R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmospheric attenuation</topic><topic>Atmospheric radiation</topic><topic>attenuation</topic><topic>Configuration management</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Estimates</topic><topic>Excavation</topic><topic>extinction cross-section</topic><topic>Millimeter waves</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar attenuation</topic><topic>Radar measurement</topic><topic>Rain</topic><topic>raindrop backscattering cross-section</topic><topic>raindrop size distribution</topic><topic>Raindrops</topic><topic>Remote sensing</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>specific attenuation</topic><topic>T-matrix particle scattering</topic><topic>Wave attenuation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Christopher R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals?</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1305</spage><pages>1305-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Vertically pointing radars (VPRs) operating at millimeter wavelengths measure the power return from raindrops enabling precipitation retrievals as a function of height. However, as the rain rate increases, there are combinations of rain rate and rain path length that produce sufficient attenuation to prevent the radar from detecting raindrops all the way through rain shafts. This study explores the question: Which rain rate and path length combinations completely extinguish radar return signals for VPRs operating between 3 and 200 GHz? An important step in these simulations is converting attenuated radar reflectivity factor into radar received signal-to-noise ratio (SNR) in order to determine the range where the SNR drops below the receiver detection threshold. Configuring the simulations to mimic a U.S. Department of Energy Atmospheric Radiation Mission (ARM) W-band (95 GHz) radar deployed in Brazil, the simulation results indicate that a W-band radar could observe raindrops above 3.5 km only when the rain rate was less than approximately 4 mm h−1. The deployed W-band radar measurements confirm the simulation results with maximum observed heights ranging between 3 and 4.5 km when a surface disdrometer measured 4 mm h−1 rain rate (based on 25-to-75 percentiles from over 25,000 W-band radar profiles). In summary, this study contributes to our understanding of how rain and atmospheric gas attenuation impacts the performance of millimeter-wave VPRs and will help with the design and configuration of multi-frequency VPRs deployed in future field campaigns.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14061305</doi><orcidid>https://orcid.org/0000-0001-9394-8850</orcidid><orcidid>https://orcid.org/0000000193948850</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2022-03, Vol.14 (6), p.1305 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_49639e81353a4215a9204b1cdf334275 |
source | Publicly Available Content Database |
subjects | Atmospheric attenuation Atmospheric radiation attenuation Configuration management ENVIRONMENTAL SCIENCES Estimates Excavation extinction cross-section Millimeter waves Precipitation Radar Radar attenuation Radar measurement Rain raindrop backscattering cross-section raindrop size distribution Raindrops Remote sensing Signal to noise ratio Simulation specific attenuation T-matrix particle scattering Wave attenuation Wavelengths |
title | How Much Attenuation Extinguishes mm-Wave Vertically Pointing Radar Return Signals? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Much%20Attenuation%20Extinguishes%20mm-Wave%20Vertically%20Pointing%20Radar%20Return%20Signals?&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Williams,%20Christopher%20R.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2022-03-01&rft.volume=14&rft.issue=6&rft.spage=1305&rft.pages=1305-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14061305&rft_dat=%3Cproquest_doaj_%3E2642461883%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-56185e27f679d15a659991d31f6d25573cb1c1aead4c9261489cf22d424e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642461883&rft_id=info:pmid/&rfr_iscdi=true |