Loading…
Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)
In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or...
Saved in:
Published in: | International journal of industrial engineering & production research 2013-06, Vol.24 (2), p.137-142 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 142 |
container_issue | 2 |
container_start_page | 137 |
container_title | International journal of industrial engineering & production research |
container_volume | 24 |
creator | Rassoul Noorossana Abbas Saghaei Hamidreza Izadbakhsh Omid Aghababaei |
description | In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method. |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c</doaj_id><sourcerecordid>oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c3</originalsourceid><addsrcrecordid>eNqtjMFqwzAQRE1poaHNP-jYHgwmkmL5HFJaiCGFHHoTK3tlNijaICmF_H3d0E_oXGZ4A--uWqyk0rVcy6_7eTeNqZUx3WO1zPnYzGmN1NosKtdzpMKJ4iT6SygU-UQQxI4nKmKf2FPALL4JflG9o4iQRM8jhixePi8QqFzFNk7zgTfLhqPHhHFAsYczptfn6sFDyLj866fq42172LzXI8PRnhOdIF0tA9kb4DRZSIWGgFZ1rXfolHerRq29BDd22rVeaTc61w3yP10_dcNjaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)</title><source>EZB Electronic Journals Library</source><creator>Rassoul Noorossana ; Abbas Saghaei ; Hamidreza Izadbakhsh ; Omid Aghababaei</creator><creatorcontrib>Rassoul Noorossana ; Abbas Saghaei ; Hamidreza Izadbakhsh ; Omid Aghababaei</creatorcontrib><description>In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method.</description><identifier>ISSN: 2008-4889</identifier><identifier>EISSN: 2345-363X</identifier><language>eng</language><publisher>Iran University of Science & Technology</publisher><subject>Average Run Length (ARL) ; Loglinear Models ; Multinomial Logit Regression ; Multivariate Exponentially Weighted Moving Average (MEWMA) ; Profile Monitoring</subject><ispartof>International journal of industrial engineering & production research, 2013-06, Vol.24 (2), p.137-142</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Rassoul Noorossana</creatorcontrib><creatorcontrib>Abbas Saghaei</creatorcontrib><creatorcontrib>Hamidreza Izadbakhsh</creatorcontrib><creatorcontrib>Omid Aghababaei</creatorcontrib><title>Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)</title><title>International journal of industrial engineering & production research</title><description>In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method.</description><subject>Average Run Length (ARL)</subject><subject>Loglinear Models</subject><subject>Multinomial Logit Regression</subject><subject>Multivariate Exponentially Weighted Moving Average (MEWMA)</subject><subject>Profile Monitoring</subject><issn>2008-4889</issn><issn>2345-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjMFqwzAQRE1poaHNP-jYHgwmkmL5HFJaiCGFHHoTK3tlNijaICmF_H3d0E_oXGZ4A--uWqyk0rVcy6_7eTeNqZUx3WO1zPnYzGmN1NosKtdzpMKJ4iT6SygU-UQQxI4nKmKf2FPALL4JflG9o4iQRM8jhixePi8QqFzFNk7zgTfLhqPHhHFAsYczptfn6sFDyLj866fq42172LzXI8PRnhOdIF0tA9kb4DRZSIWGgFZ1rXfolHerRq29BDd22rVeaTc61w3yP10_dcNjaA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Rassoul Noorossana</creator><creator>Abbas Saghaei</creator><creator>Hamidreza Izadbakhsh</creator><creator>Omid Aghababaei</creator><general>Iran University of Science & Technology</general><scope>DOA</scope></search><sort><creationdate>20130601</creationdate><title>Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)</title><author>Rassoul Noorossana ; Abbas Saghaei ; Hamidreza Izadbakhsh ; Omid Aghababaei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Average Run Length (ARL)</topic><topic>Loglinear Models</topic><topic>Multinomial Logit Regression</topic><topic>Multivariate Exponentially Weighted Moving Average (MEWMA)</topic><topic>Profile Monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rassoul Noorossana</creatorcontrib><creatorcontrib>Abbas Saghaei</creatorcontrib><creatorcontrib>Hamidreza Izadbakhsh</creatorcontrib><creatorcontrib>Omid Aghababaei</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of industrial engineering & production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rassoul Noorossana</au><au>Abbas Saghaei</au><au>Hamidreza Izadbakhsh</au><au>Omid Aghababaei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper)</atitle><jtitle>International journal of industrial engineering & production research</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>137</spage><epage>142</epage><pages>137-142</pages><issn>2008-4889</issn><eissn>2345-363X</eissn><abstract>In certain statistical process control applications, quality of a process or product can be characterized by a function commonly referred to as profile. Some of the potential applications of profile monitoring are cases where quality characteristic of interest is modelled using binary,multinomial or ordinal variables. In this paper, profiles with multinomial response are studied. For this purpose, multinomial logit regression (MLR) is considered as the basis.Then, the MLR is converted to Poisson GLM with log link. Two methods including Multivariate exponentially weighted moving average (MEWMA) statistics, and Likelihood ratio test (LRT) statistics are proposed to monitor MLR profiles in phase II. Performances of these three methods are evaluated by average run length criterion (ARL). A case study from alloy fasteners manufacturing process is used to illustrate the implementation of the proposed approach. Results indicate satisfactory performance for the proposed method.</abstract><pub>Iran University of Science & Technology</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-4889 |
ispartof | International journal of industrial engineering & production research, 2013-06, Vol.24 (2), p.137-142 |
issn | 2008-4889 2345-363X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c |
source | EZB Electronic Journals Library |
subjects | Average Run Length (ARL) Loglinear Models Multinomial Logit Regression Multivariate Exponentially Weighted Moving Average (MEWMA) Profile Monitoring |
title | Monitoring Multinomial Logit Profiles via Log-Linear Models (Quality Engineering Conference Paper) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Multinomial%20Logit%20Profiles%20via%20Log-Linear%20Models%20(Quality%20Engineering%20Conference%20Paper)&rft.jtitle=International%20journal%20of%20industrial%20engineering%20&%20production%20research&rft.au=Rassoul%20Noorossana&rft.date=2013-06-01&rft.volume=24&rft.issue=2&rft.spage=137&rft.epage=142&rft.pages=137-142&rft.issn=2008-4889&rft.eissn=2345-363X&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_497fbeb4fb2046f3abd95b7f45bdbb9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |