Loading…
Investigation of the Structure and Dynamics of Antiviral Drug Adefovir Dipivoxil by Site-Specific Spin–Lattice Relaxation Time Measurements and Chemical Shift Anisotropy Tensor Measurements
Adefovir is regarded as a potential antiviral agent. However, it cannot be considered as a valuable drug candidate due to its high polarity that limits its permeability across the human intestinal mucosa. When the ribose phosphate group of adefovir is replaced by the isopolar phosphonomethyl ether f...
Saved in:
Published in: | ACS omega 2020-11, Vol.5 (45), p.29373-29381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adefovir is regarded as a potential antiviral agent. However, it cannot be considered as a valuable drug candidate due to its high polarity that limits its permeability across the human intestinal mucosa. When the ribose phosphate group of adefovir is replaced by the isopolar phosphonomethyl ether functionality, it neutralizes the negative charge of the drug. This makes the drug lipid-soluble and potent to diffuse across the cell membrane. The prodrug adefovir dipivoxil is regarded as a potent antiviral drug against hepatitis B virus (HBV), human immunodeficiency virus (HIV), Rauscher murine leukemia virus (R-MuLV), murine cytomegalovirus (MCMV), herpes simplex virus (HSV), simian immunodeficiency virus (SIV), and feline immunodeficiency virus (FIV). The correlation between the structure and the dynamics of adefovir dipivoxil is determined by measuring the principal components of chemical shift anisotropy (CSA) tensor, site-specific spin–lattice relaxation time, and molecular correlation time at crystallographically different carbon nuclei sites. The CSA parameters, spin–lattice relaxation time, and molecular correlation time of phosphorous nucleus of the organophosphate group of adefovir dipivoxil molecule are also determined. The spin–lattice relaxation time of carbon nuclei varies from 1 to 107 s. The range of molecular correlation time also varies from 10–4 to 10–8 s. These remarkable diversities of motional dynamics of the molecules imply that there exist various motional degrees of freedom within this valuable drug and these motional degrees of freedom are independent of each other, which may be the reason for the biological activities exhibited by the drug. The correlation between structure and dynamics of such an important antiviral drug adefovir dipivoxil can be visualized by these types of extensive spectroscopic measurements, which will enlighten the path of inventing advanced medicine in the pharmaceutical industry, and it will also illuminate the understanding of the structure–activity relationships of antiviral drug. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.0c04205 |