Loading…

Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing

Innovative terahertz waveguides are in high demand to serve as a versatile platform for transporting and manipulating terahertz signals for the full deployment of future six-generation (6G) communication systems. Metal-wire waveguides have emerged as promising candidates, offering the crucial advant...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Germany), 2024-04, Vol.13 (10), p.1929-1937
Main Authors: Ghazialsharif, Mohammad, Dong, Junliang, Bongiovanni, Domenico, Vorobiov, Anton, Wang, Ziteng, Chen, Zhigang, Kip, Detlef, Morandotti, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413
cites cdi_FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413
container_end_page 1937
container_issue 10
container_start_page 1929
container_title Nanophotonics (Berlin, Germany)
container_volume 13
creator Ghazialsharif, Mohammad
Dong, Junliang
Bongiovanni, Domenico
Vorobiov, Anton
Wang, Ziteng
Chen, Zhigang
Kip, Detlef
Morandotti, Roberto
description Innovative terahertz waveguides are in high demand to serve as a versatile platform for transporting and manipulating terahertz signals for the full deployment of future six-generation (6G) communication systems. Metal-wire waveguides have emerged as promising candidates, offering the crucial advantage of sustaining low-loss and low-dispersion propagation of broadband terahertz pulses. Recent advances have opened up new avenues for implementing signal-processing functionalities within metal-wire waveguides by directly engraving grooves along the wire surfaces. However, the challenge remains to design novel groove structures to unlock unprecedented signal-processing functionalities. In this study, we report a plasmonic signal processor by engineering topological interface states within a terahertz two-wire waveguide. We construct the interface by connecting two multiscale groove structures with distinct topological invariants, i.e., featuring a π-shift difference in the Zak phases. The existence of this topological interface within the waveguide is experimentally validated by investigating the transmission spectrum, revealing a prominent transmission peak in the center of the topological bandgap. Remarkably, we show that this resonance is highly robust against structural disorders, and its quality factor can be flexibly controlled. This unique feature not only facilitates essential functions such as band filtering and isolating but also promises to serve as a linear differential equation solver. Our approach paves the way for the development of new-generation all-optical analog signal processors tailored for future terahertz networks, featuring remarkable structural simplicity, ultrafast processing speeds, as well as highly reliable performance.
doi_str_mv 10.1515/nanoph-2023-0900
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_498399b2024748e2be168edab4f5ca4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_498399b2024748e2be168edab4f5ca4a</doaj_id><sourcerecordid>3046804405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEaqu2955QJC5cAv6KE99AVYFKlbiUszW2x6mXbLzYCavy6_E2ZZGQ8MWj8TOvZuZ1VV1R8o62tH0_wRR3Dw0jjDdEEfKiOmNUsaaXVLw8xkSeVpc5b0g5SnGq5El1ynvZU9l1Z9X3m2kIE2IK01DPcRfHOAQLYx2mGZMHi3WeYcZcEvUWZxibfUhY7-EnDktw5cHHVJsUwRmYXF2q4AHT_KvOYZiK0C5FizkX_YvqlYcx4-XzfV59-3Rzf_2lufv6-fb6411jhWJzgxxVx6ywxkvTsU71LTAhuLdMGu89ddS0bUk40rnOe04NYSCBSEkpCsrPq9tV10XY6F0KW0iPOkLQT4mYBg1pDnZELVTPlTJlh6ITPTKDVPbowAjfWhBQtN6uWmWMHwvmWW9DtjiOMGFcsuZE9EIJ2smCvvkH3cQllRU8UbInQpC2UGSlbIo5J_THBinRB1_16qs--KoPvpaS18_Ci9miOxb8cbEAH1ZgD2PZv8MhLY8l-NvA_7Qpp6T8E8V_A_7atSo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046804405</pqid></control><display><type>article</type><title>Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>De Gruyter Open Access Journals</source><source>PubMed Central (PMC)</source><creator>Ghazialsharif, Mohammad ; Dong, Junliang ; Bongiovanni, Domenico ; Vorobiov, Anton ; Wang, Ziteng ; Chen, Zhigang ; Kip, Detlef ; Morandotti, Roberto</creator><creatorcontrib>Ghazialsharif, Mohammad ; Dong, Junliang ; Bongiovanni, Domenico ; Vorobiov, Anton ; Wang, Ziteng ; Chen, Zhigang ; Kip, Detlef ; Morandotti, Roberto</creatorcontrib><description>Innovative terahertz waveguides are in high demand to serve as a versatile platform for transporting and manipulating terahertz signals for the full deployment of future six-generation (6G) communication systems. Metal-wire waveguides have emerged as promising candidates, offering the crucial advantage of sustaining low-loss and low-dispersion propagation of broadband terahertz pulses. Recent advances have opened up new avenues for implementing signal-processing functionalities within metal-wire waveguides by directly engraving grooves along the wire surfaces. However, the challenge remains to design novel groove structures to unlock unprecedented signal-processing functionalities. In this study, we report a plasmonic signal processor by engineering topological interface states within a terahertz two-wire waveguide. We construct the interface by connecting two multiscale groove structures with distinct topological invariants, i.e., featuring a π-shift difference in the Zak phases. The existence of this topological interface within the waveguide is experimentally validated by investigating the transmission spectrum, revealing a prominent transmission peak in the center of the topological bandgap. Remarkably, we show that this resonance is highly robust against structural disorders, and its quality factor can be flexibly controlled. This unique feature not only facilitates essential functions such as band filtering and isolating but also promises to serve as a linear differential equation solver. Our approach paves the way for the development of new-generation all-optical analog signal processors tailored for future terahertz networks, featuring remarkable structural simplicity, ultrafast processing speeds, as well as highly reliable performance.</description><identifier>ISSN: 2192-8606</identifier><identifier>ISSN: 2192-8614</identifier><identifier>EISSN: 2192-8614</identifier><identifier>DOI: 10.1515/nanoph-2023-0900</identifier><identifier>PMID: 38681677</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>analog signal processing ; Applied physics ; Broadband ; Communications systems ; Differential equations ; Engineering ; Engraving ; Geometry ; Grooves ; Microprocessors ; Optical communication ; Photonics ; Propagation ; Signal generation ; Signal processing ; Spectrum allocation ; terahertz ; topological interface states ; Topology ; Waveguides ; Wire ; Zak phase</subject><ispartof>Nanophotonics (Berlin, Germany), 2024-04, Vol.13 (10), p.1929-1937</ispartof><rights>2024 the author(s), published by De Gruyter, Berlin/Boston.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413</citedby><cites>FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413</cites><orcidid>0000-0001-7923-0113 ; 0000-0002-5000-2691 ; 0000-0002-2691-8528 ; 0000-0001-7050-9943 ; 0000-0003-3109-185X ; 0000-0001-7717-1519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/nanoph-2023-0900/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046804405?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,67158,68942</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38681677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghazialsharif, Mohammad</creatorcontrib><creatorcontrib>Dong, Junliang</creatorcontrib><creatorcontrib>Bongiovanni, Domenico</creatorcontrib><creatorcontrib>Vorobiov, Anton</creatorcontrib><creatorcontrib>Wang, Ziteng</creatorcontrib><creatorcontrib>Chen, Zhigang</creatorcontrib><creatorcontrib>Kip, Detlef</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><title>Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing</title><title>Nanophotonics (Berlin, Germany)</title><addtitle>Nanophotonics</addtitle><description>Innovative terahertz waveguides are in high demand to serve as a versatile platform for transporting and manipulating terahertz signals for the full deployment of future six-generation (6G) communication systems. Metal-wire waveguides have emerged as promising candidates, offering the crucial advantage of sustaining low-loss and low-dispersion propagation of broadband terahertz pulses. Recent advances have opened up new avenues for implementing signal-processing functionalities within metal-wire waveguides by directly engraving grooves along the wire surfaces. However, the challenge remains to design novel groove structures to unlock unprecedented signal-processing functionalities. In this study, we report a plasmonic signal processor by engineering topological interface states within a terahertz two-wire waveguide. We construct the interface by connecting two multiscale groove structures with distinct topological invariants, i.e., featuring a π-shift difference in the Zak phases. The existence of this topological interface within the waveguide is experimentally validated by investigating the transmission spectrum, revealing a prominent transmission peak in the center of the topological bandgap. Remarkably, we show that this resonance is highly robust against structural disorders, and its quality factor can be flexibly controlled. This unique feature not only facilitates essential functions such as band filtering and isolating but also promises to serve as a linear differential equation solver. Our approach paves the way for the development of new-generation all-optical analog signal processors tailored for future terahertz networks, featuring remarkable structural simplicity, ultrafast processing speeds, as well as highly reliable performance.</description><subject>analog signal processing</subject><subject>Applied physics</subject><subject>Broadband</subject><subject>Communications systems</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Engraving</subject><subject>Geometry</subject><subject>Grooves</subject><subject>Microprocessors</subject><subject>Optical communication</subject><subject>Photonics</subject><subject>Propagation</subject><subject>Signal generation</subject><subject>Signal processing</subject><subject>Spectrum allocation</subject><subject>terahertz</subject><subject>topological interface states</subject><subject>Topology</subject><subject>Waveguides</subject><subject>Wire</subject><subject>Zak phase</subject><issn>2192-8606</issn><issn>2192-8614</issn><issn>2192-8614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1v1DAQhiMEaqu2955QJC5cAv6KE99AVYFKlbiUszW2x6mXbLzYCavy6_E2ZZGQ8MWj8TOvZuZ1VV1R8o62tH0_wRR3Dw0jjDdEEfKiOmNUsaaXVLw8xkSeVpc5b0g5SnGq5El1ynvZU9l1Z9X3m2kIE2IK01DPcRfHOAQLYx2mGZMHi3WeYcZcEvUWZxibfUhY7-EnDktw5cHHVJsUwRmYXF2q4AHT_KvOYZiK0C5FizkX_YvqlYcx4-XzfV59-3Rzf_2lufv6-fb6411jhWJzgxxVx6ywxkvTsU71LTAhuLdMGu89ddS0bUk40rnOe04NYSCBSEkpCsrPq9tV10XY6F0KW0iPOkLQT4mYBg1pDnZELVTPlTJlh6ITPTKDVPbowAjfWhBQtN6uWmWMHwvmWW9DtjiOMGFcsuZE9EIJ2smCvvkH3cQllRU8UbInQpC2UGSlbIo5J_THBinRB1_16qs--KoPvpaS18_Ci9miOxb8cbEAH1ZgD2PZv8MhLY8l-NvA_7Qpp6T8E8V_A_7atSo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Ghazialsharif, Mohammad</creator><creator>Dong, Junliang</creator><creator>Bongiovanni, Domenico</creator><creator>Vorobiov, Anton</creator><creator>Wang, Ziteng</creator><creator>Chen, Zhigang</creator><creator>Kip, Detlef</creator><creator>Morandotti, Roberto</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7923-0113</orcidid><orcidid>https://orcid.org/0000-0002-5000-2691</orcidid><orcidid>https://orcid.org/0000-0002-2691-8528</orcidid><orcidid>https://orcid.org/0000-0001-7050-9943</orcidid><orcidid>https://orcid.org/0000-0003-3109-185X</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid></search><sort><creationdate>202404</creationdate><title>Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing</title><author>Ghazialsharif, Mohammad ; Dong, Junliang ; Bongiovanni, Domenico ; Vorobiov, Anton ; Wang, Ziteng ; Chen, Zhigang ; Kip, Detlef ; Morandotti, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>analog signal processing</topic><topic>Applied physics</topic><topic>Broadband</topic><topic>Communications systems</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Engraving</topic><topic>Geometry</topic><topic>Grooves</topic><topic>Microprocessors</topic><topic>Optical communication</topic><topic>Photonics</topic><topic>Propagation</topic><topic>Signal generation</topic><topic>Signal processing</topic><topic>Spectrum allocation</topic><topic>terahertz</topic><topic>topological interface states</topic><topic>Topology</topic><topic>Waveguides</topic><topic>Wire</topic><topic>Zak phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazialsharif, Mohammad</creatorcontrib><creatorcontrib>Dong, Junliang</creatorcontrib><creatorcontrib>Bongiovanni, Domenico</creatorcontrib><creatorcontrib>Vorobiov, Anton</creatorcontrib><creatorcontrib>Wang, Ziteng</creatorcontrib><creatorcontrib>Chen, Zhigang</creatorcontrib><creatorcontrib>Kip, Detlef</creatorcontrib><creatorcontrib>Morandotti, Roberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanophotonics (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazialsharif, Mohammad</au><au>Dong, Junliang</au><au>Bongiovanni, Domenico</au><au>Vorobiov, Anton</au><au>Wang, Ziteng</au><au>Chen, Zhigang</au><au>Kip, Detlef</au><au>Morandotti, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing</atitle><jtitle>Nanophotonics (Berlin, Germany)</jtitle><addtitle>Nanophotonics</addtitle><date>2024-04</date><risdate>2024</risdate><volume>13</volume><issue>10</issue><spage>1929</spage><epage>1937</epage><pages>1929-1937</pages><issn>2192-8606</issn><issn>2192-8614</issn><eissn>2192-8614</eissn><abstract>Innovative terahertz waveguides are in high demand to serve as a versatile platform for transporting and manipulating terahertz signals for the full deployment of future six-generation (6G) communication systems. Metal-wire waveguides have emerged as promising candidates, offering the crucial advantage of sustaining low-loss and low-dispersion propagation of broadband terahertz pulses. Recent advances have opened up new avenues for implementing signal-processing functionalities within metal-wire waveguides by directly engraving grooves along the wire surfaces. However, the challenge remains to design novel groove structures to unlock unprecedented signal-processing functionalities. In this study, we report a plasmonic signal processor by engineering topological interface states within a terahertz two-wire waveguide. We construct the interface by connecting two multiscale groove structures with distinct topological invariants, i.e., featuring a π-shift difference in the Zak phases. The existence of this topological interface within the waveguide is experimentally validated by investigating the transmission spectrum, revealing a prominent transmission peak in the center of the topological bandgap. Remarkably, we show that this resonance is highly robust against structural disorders, and its quality factor can be flexibly controlled. This unique feature not only facilitates essential functions such as band filtering and isolating but also promises to serve as a linear differential equation solver. Our approach paves the way for the development of new-generation all-optical analog signal processors tailored for future terahertz networks, featuring remarkable structural simplicity, ultrafast processing speeds, as well as highly reliable performance.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>38681677</pmid><doi>10.1515/nanoph-2023-0900</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7923-0113</orcidid><orcidid>https://orcid.org/0000-0002-5000-2691</orcidid><orcidid>https://orcid.org/0000-0002-2691-8528</orcidid><orcidid>https://orcid.org/0000-0001-7050-9943</orcidid><orcidid>https://orcid.org/0000-0003-3109-185X</orcidid><orcidid>https://orcid.org/0000-0001-7717-1519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-8606
ispartof Nanophotonics (Berlin, Germany), 2024-04, Vol.13 (10), p.1929-1937
issn 2192-8606
2192-8614
2192-8614
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_498399b2024748e2be168edab4f5ca4a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); De Gruyter Open Access Journals; PubMed Central (PMC)
subjects analog signal processing
Applied physics
Broadband
Communications systems
Differential equations
Engineering
Engraving
Geometry
Grooves
Microprocessors
Optical communication
Photonics
Propagation
Signal generation
Signal processing
Spectrum allocation
terahertz
topological interface states
Topology
Waveguides
Wire
Zak phase
title Engineering topological interface states in metal-wire waveguides for broadband terahertz signal processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20topological%20interface%20states%20in%20metal-wire%20waveguides%20for%20broadband%20terahertz%20signal%20processing&rft.jtitle=Nanophotonics%20(Berlin,%20Germany)&rft.au=Ghazialsharif,%20Mohammad&rft.date=2024-04&rft.volume=13&rft.issue=10&rft.spage=1929&rft.epage=1937&rft.pages=1929-1937&rft.issn=2192-8606&rft.eissn=2192-8614&rft_id=info:doi/10.1515/nanoph-2023-0900&rft_dat=%3Cproquest_doaj_%3E3046804405%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-e3e972c4cbf6b727985a2443fc26bfff1d1b55443d07d7ff31b02a6a06611e413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046804405&rft_id=info:pmid/38681677&rfr_iscdi=true