Loading…

A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil

Country-specific evidence is needed to guide decisions regarding whether and how to implement lung cancer screening in different settings. For this study, we estimated the potential numbers of individuals screened and lung cancer deaths prevented in Brazil after applying different strategies to defi...

Full description

Saved in:
Bibliographic Details
Published in:EClinicalMedicine 2021-12, Vol.42, p.101176-101176, Article 101176
Main Authors: Miranda-Filho, Adalberto, Charvat, Hadrien, Bray, Freddie, Migowski, Arn, Cheung, Li C., Vaccarella, Salvatore, Johansson, Mattias, Carvalho, Andre L., Robbins, Hilary A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683
cites cdi_FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683
container_end_page 101176
container_issue
container_start_page 101176
container_title EClinicalMedicine
container_volume 42
creator Miranda-Filho, Adalberto
Charvat, Hadrien
Bray, Freddie
Migowski, Arn
Cheung, Li C.
Vaccarella, Salvatore
Johansson, Mattias
Carvalho, Andre L.
Robbins, Hilary A.
description Country-specific evidence is needed to guide decisions regarding whether and how to implement lung cancer screening in different settings. For this study, we estimated the potential numbers of individuals screened and lung cancer deaths prevented in Brazil after applying different strategies to define screening eligibility. We applied the Lung Cancer Death Risk Assessment Tool (LCDRAT) to survey data on current and former smokers (ever-smokers) in 15 Brazilian state capital cities that comprise 18% of the Brazilian population. We evaluated three strategies to define eligibility for screening: (1) pack-years and cessation time (≥30 pack-years and
doi_str_mv 10.1016/j.eclinm.2021.101176
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_49a9d67edaf7495d8fa501d26af61ed1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589537021004569</els_id><doaj_id>oai_doaj_org_article_49a9d67edaf7495d8fa501d26af61ed1</doaj_id><sourcerecordid>2597488117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683</originalsourceid><addsrcrecordid>eNp9kU1v1DAQQCMEolXpP0DIRy679UccxxekUgGtVIkLHDhZE3u8eOXEi52ttP31eEkp7YWTLc_MG8-8pnnL6JpR1l1s12hjmMY1p5wdn5jqXjSnXPZ6JYWiL5_cT5rzUraUUk7bXnf0dXMiWtVJLflp8-OSjMlhZW0ITBAPJRQyJ2LTuIOMpEY2YQgxzAdS5gwzbgIW4lMmcV9rLEwWMyk2I05HSJjIxwz3Ib5pXnmIBc8fzrPm--dP366uV7dfv9xcXd6urOR6XkkGig6D4445bbWQg7cCQDjN9KCoB-8Hx5SiAlukUgzQOsaxs8JxKbpenDU3C9cl2JpdDiPkg0kQzJ-HlDcG8hxsRNNq0K5T6MCrVkvXe5CUOd6B7xg6VlkfFtZuP4zoLE515PgM-jwyhZ9mk-5MLxWTQlTA-wdATr_2WGYzhmIxRpgw7YvhUqu276uumtouqTanUjL6xzaMmqNkszWLZHOUbBbJtezd0y8-Fv1V-m8GrEu_C5hNsQGrJRcy2rluJfy_w29JVrwz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597488117</pqid></control><display><type>article</type><title>A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Miranda-Filho, Adalberto ; Charvat, Hadrien ; Bray, Freddie ; Migowski, Arn ; Cheung, Li C. ; Vaccarella, Salvatore ; Johansson, Mattias ; Carvalho, Andre L. ; Robbins, Hilary A.</creator><creatorcontrib>Miranda-Filho, Adalberto ; Charvat, Hadrien ; Bray, Freddie ; Migowski, Arn ; Cheung, Li C. ; Vaccarella, Salvatore ; Johansson, Mattias ; Carvalho, Andre L. ; Robbins, Hilary A.</creatorcontrib><description>Country-specific evidence is needed to guide decisions regarding whether and how to implement lung cancer screening in different settings. For this study, we estimated the potential numbers of individuals screened and lung cancer deaths prevented in Brazil after applying different strategies to define screening eligibility. We applied the Lung Cancer Death Risk Assessment Tool (LCDRAT) to survey data on current and former smokers (ever-smokers) in 15 Brazilian state capital cities that comprise 18% of the Brazilian population. We evaluated three strategies to define eligibility for screening: (1) pack-years and cessation time (≥30 pack-years and &lt;15 years since cessation); (2) the LCDRAT risk model with a fixed risk threshold; and (3) LCDRAT with age-specific risk thresholds. Among 2.3 million Brazilian ever-smokers aged 55–79 years, 21,459 (95%CI 20,532–22,387) lung cancer deaths were predicted over 5 years without screening. Applying the fixed risk-based eligibility definition would prevent more lung cancer deaths than the pack-years definition [2,939 (95%CI 2751–3127) vs. 2,500 (95%CI 2318–2681) lung cancer deaths], and with higher screening efficiency [NNS=177 (95%CI 170–183) vs. 205 (95%CI 194–216)], but would tend to screen older individuals [mean age 67.8 (95%CI 67.5–68.2) vs. 63.4 (95%CI 63.0–63.9) years]. Applying age-specific risk thresholds would allow younger ever-smokers to be screened, although these individuals would be at lower risk. The age-specific thresholds strategy would avert three-fifths (60.1%) of preventable lung cancer deaths [N = 2629 (95%CI 2448–2810)] by screening 21.9% of ever-smokers. The definition of eligibility impacts the efficiency of lung cancer screening and the mean age of the eligible population. As implementation of lung screening proceeds in different countries, our analytical framework can be used to guide similar analyses in other contexts. Due to limitations of our models, more research would be needed. H. Robbins and M. Johansson were supported by the INTEGRAL project (NCI U19 CA203654). H. Robbins was additionally supported by NCI R03 CA245979.</description><identifier>ISSN: 2589-5370</identifier><identifier>EISSN: 2589-5370</identifier><identifier>DOI: 10.1016/j.eclinm.2021.101176</identifier><identifier>PMID: 34765952</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Brazil ; Early cancer detection ; Lung cancer screening ; Research paper ; Tobacco smoking</subject><ispartof>EClinicalMedicine, 2021-12, Vol.42, p.101176-101176, Article 101176</ispartof><rights>2021</rights><rights>2021 Published by Elsevier Ltd.</rights><rights>2021 Published by Elsevier Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683</citedby><cites>FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589537021004569$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34765952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda-Filho, Adalberto</creatorcontrib><creatorcontrib>Charvat, Hadrien</creatorcontrib><creatorcontrib>Bray, Freddie</creatorcontrib><creatorcontrib>Migowski, Arn</creatorcontrib><creatorcontrib>Cheung, Li C.</creatorcontrib><creatorcontrib>Vaccarella, Salvatore</creatorcontrib><creatorcontrib>Johansson, Mattias</creatorcontrib><creatorcontrib>Carvalho, Andre L.</creatorcontrib><creatorcontrib>Robbins, Hilary A.</creatorcontrib><title>A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil</title><title>EClinicalMedicine</title><addtitle>EClinicalMedicine</addtitle><description>Country-specific evidence is needed to guide decisions regarding whether and how to implement lung cancer screening in different settings. For this study, we estimated the potential numbers of individuals screened and lung cancer deaths prevented in Brazil after applying different strategies to define screening eligibility. We applied the Lung Cancer Death Risk Assessment Tool (LCDRAT) to survey data on current and former smokers (ever-smokers) in 15 Brazilian state capital cities that comprise 18% of the Brazilian population. We evaluated three strategies to define eligibility for screening: (1) pack-years and cessation time (≥30 pack-years and &lt;15 years since cessation); (2) the LCDRAT risk model with a fixed risk threshold; and (3) LCDRAT with age-specific risk thresholds. Among 2.3 million Brazilian ever-smokers aged 55–79 years, 21,459 (95%CI 20,532–22,387) lung cancer deaths were predicted over 5 years without screening. Applying the fixed risk-based eligibility definition would prevent more lung cancer deaths than the pack-years definition [2,939 (95%CI 2751–3127) vs. 2,500 (95%CI 2318–2681) lung cancer deaths], and with higher screening efficiency [NNS=177 (95%CI 170–183) vs. 205 (95%CI 194–216)], but would tend to screen older individuals [mean age 67.8 (95%CI 67.5–68.2) vs. 63.4 (95%CI 63.0–63.9) years]. Applying age-specific risk thresholds would allow younger ever-smokers to be screened, although these individuals would be at lower risk. The age-specific thresholds strategy would avert three-fifths (60.1%) of preventable lung cancer deaths [N = 2629 (95%CI 2448–2810)] by screening 21.9% of ever-smokers. The definition of eligibility impacts the efficiency of lung cancer screening and the mean age of the eligible population. As implementation of lung screening proceeds in different countries, our analytical framework can be used to guide similar analyses in other contexts. Due to limitations of our models, more research would be needed. H. Robbins and M. Johansson were supported by the INTEGRAL project (NCI U19 CA203654). H. Robbins was additionally supported by NCI R03 CA245979.</description><subject>Brazil</subject><subject>Early cancer detection</subject><subject>Lung cancer screening</subject><subject>Research paper</subject><subject>Tobacco smoking</subject><issn>2589-5370</issn><issn>2589-5370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQQCMEolXpP0DIRy679UccxxekUgGtVIkLHDhZE3u8eOXEi52ttP31eEkp7YWTLc_MG8-8pnnL6JpR1l1s12hjmMY1p5wdn5jqXjSnXPZ6JYWiL5_cT5rzUraUUk7bXnf0dXMiWtVJLflp8-OSjMlhZW0ITBAPJRQyJ2LTuIOMpEY2YQgxzAdS5gwzbgIW4lMmcV9rLEwWMyk2I05HSJjIxwz3Ib5pXnmIBc8fzrPm--dP366uV7dfv9xcXd6urOR6XkkGig6D4445bbWQg7cCQDjN9KCoB-8Hx5SiAlukUgzQOsaxs8JxKbpenDU3C9cl2JpdDiPkg0kQzJ-HlDcG8hxsRNNq0K5T6MCrVkvXe5CUOd6B7xg6VlkfFtZuP4zoLE515PgM-jwyhZ9mk-5MLxWTQlTA-wdATr_2WGYzhmIxRpgw7YvhUqu276uumtouqTanUjL6xzaMmqNkszWLZHOUbBbJtezd0y8-Fv1V-m8GrEu_C5hNsQGrJRcy2rluJfy_w29JVrwz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Miranda-Filho, Adalberto</creator><creator>Charvat, Hadrien</creator><creator>Bray, Freddie</creator><creator>Migowski, Arn</creator><creator>Cheung, Li C.</creator><creator>Vaccarella, Salvatore</creator><creator>Johansson, Mattias</creator><creator>Carvalho, Andre L.</creator><creator>Robbins, Hilary A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil</title><author>Miranda-Filho, Adalberto ; Charvat, Hadrien ; Bray, Freddie ; Migowski, Arn ; Cheung, Li C. ; Vaccarella, Salvatore ; Johansson, Mattias ; Carvalho, Andre L. ; Robbins, Hilary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brazil</topic><topic>Early cancer detection</topic><topic>Lung cancer screening</topic><topic>Research paper</topic><topic>Tobacco smoking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda-Filho, Adalberto</creatorcontrib><creatorcontrib>Charvat, Hadrien</creatorcontrib><creatorcontrib>Bray, Freddie</creatorcontrib><creatorcontrib>Migowski, Arn</creatorcontrib><creatorcontrib>Cheung, Li C.</creatorcontrib><creatorcontrib>Vaccarella, Salvatore</creatorcontrib><creatorcontrib>Johansson, Mattias</creatorcontrib><creatorcontrib>Carvalho, Andre L.</creatorcontrib><creatorcontrib>Robbins, Hilary A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EClinicalMedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda-Filho, Adalberto</au><au>Charvat, Hadrien</au><au>Bray, Freddie</au><au>Migowski, Arn</au><au>Cheung, Li C.</au><au>Vaccarella, Salvatore</au><au>Johansson, Mattias</au><au>Carvalho, Andre L.</au><au>Robbins, Hilary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil</atitle><jtitle>EClinicalMedicine</jtitle><addtitle>EClinicalMedicine</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>42</volume><spage>101176</spage><epage>101176</epage><pages>101176-101176</pages><artnum>101176</artnum><issn>2589-5370</issn><eissn>2589-5370</eissn><abstract>Country-specific evidence is needed to guide decisions regarding whether and how to implement lung cancer screening in different settings. For this study, we estimated the potential numbers of individuals screened and lung cancer deaths prevented in Brazil after applying different strategies to define screening eligibility. We applied the Lung Cancer Death Risk Assessment Tool (LCDRAT) to survey data on current and former smokers (ever-smokers) in 15 Brazilian state capital cities that comprise 18% of the Brazilian population. We evaluated three strategies to define eligibility for screening: (1) pack-years and cessation time (≥30 pack-years and &lt;15 years since cessation); (2) the LCDRAT risk model with a fixed risk threshold; and (3) LCDRAT with age-specific risk thresholds. Among 2.3 million Brazilian ever-smokers aged 55–79 years, 21,459 (95%CI 20,532–22,387) lung cancer deaths were predicted over 5 years without screening. Applying the fixed risk-based eligibility definition would prevent more lung cancer deaths than the pack-years definition [2,939 (95%CI 2751–3127) vs. 2,500 (95%CI 2318–2681) lung cancer deaths], and with higher screening efficiency [NNS=177 (95%CI 170–183) vs. 205 (95%CI 194–216)], but would tend to screen older individuals [mean age 67.8 (95%CI 67.5–68.2) vs. 63.4 (95%CI 63.0–63.9) years]. Applying age-specific risk thresholds would allow younger ever-smokers to be screened, although these individuals would be at lower risk. The age-specific thresholds strategy would avert three-fifths (60.1%) of preventable lung cancer deaths [N = 2629 (95%CI 2448–2810)] by screening 21.9% of ever-smokers. The definition of eligibility impacts the efficiency of lung cancer screening and the mean age of the eligible population. As implementation of lung screening proceeds in different countries, our analytical framework can be used to guide similar analyses in other contexts. Due to limitations of our models, more research would be needed. H. Robbins and M. Johansson were supported by the INTEGRAL project (NCI U19 CA203654). H. Robbins was additionally supported by NCI R03 CA245979.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34765952</pmid><doi>10.1016/j.eclinm.2021.101176</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-5370
ispartof EClinicalMedicine, 2021-12, Vol.42, p.101176-101176, Article 101176
issn 2589-5370
2589-5370
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_49a9d67edaf7495d8fa501d26af61ed1
source ScienceDirect; PubMed Central
subjects Brazil
Early cancer detection
Lung cancer screening
Research paper
Tobacco smoking
title A modeling analysis to compare eligibility strategies for lung cancer screening in Brazil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modeling%20analysis%20to%20compare%20eligibility%20strategies%20for%20lung%20cancer%20screening%20in%20Brazil&rft.jtitle=EClinicalMedicine&rft.au=Miranda-Filho,%20Adalberto&rft.date=2021-12-01&rft.volume=42&rft.spage=101176&rft.epage=101176&rft.pages=101176-101176&rft.artnum=101176&rft.issn=2589-5370&rft.eissn=2589-5370&rft_id=info:doi/10.1016/j.eclinm.2021.101176&rft_dat=%3Cproquest_doaj_%3E2597488117%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-51a70bbd2d1d9c935bfc3aa3d919b70faffbd17703e4e053ba4d12e6c3d253683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597488117&rft_id=info:pmid/34765952&rfr_iscdi=true