Loading…
Green functions for four-point boundary value problems with applications to heterogeneous beams
The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneo...
Saved in:
Published in: | Applications in engineering science 2024-03, Vol.17, p.100165, Article 100165 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253 |
container_end_page | |
container_issue | |
container_start_page | 100165 |
container_title | Applications in engineering science |
container_volume | 17 |
creator | Messaoudi, Abderrazek Kiss, László Péter Szeidl, György |
description | The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems. |
doi_str_mv | 10.1016/j.apples.2023.100165 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666496823000407</els_id><doaj_id>oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32</doaj_id><sourcerecordid>S2666496823000407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOHTfwId8gc78aZv2RZChczDwRZ9Dkt5sKV1TknbitzezIj75EBIOOb977kHojpIVJbS8b1dqGDqIK0YYT1LSigu0YGVZZnldVpd_3tdoGWNLCGEVpZzTBZKbANBjO_VmdL6P2PqQzhSywbt-xNpPfaPCJz6pbgI8BK87OEb84cYDPg92Rs3G0eMDjBD8HnrwU8Qa1DHeoiurugjLn_sGvT8_va1fst3rZrt-3GWGl2LMat3UygplqrLSwIXWTSOKwoLmhIpCVLxSUHHNda7SD0ILpihreGl1RTQr-A3aztzGq1YOwR1TaOmVk9-CD3upwuhMBzKvVcM1FQkjclprTSy3LBcUippazhIrn1km-BgD2F8eJfLcuWzl3Lk8dy7nzpPtYbZB2vPkIMhoHPQGGhfAjCmI-x_wBQKjjcI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><source>ScienceDirect</source><creator>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</creator><creatorcontrib>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</creatorcontrib><description>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</description><identifier>ISSN: 2666-4968</identifier><identifier>EISSN: 2666-4968</identifier><identifier>DOI: 10.1016/j.apples.2023.100165</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam ; Eigenvalue problem ; Four-point boundary value problem ; Green function ; Heterogeneous ; Vibrations</subject><ispartof>Applications in engineering science, 2024-03, Vol.17, p.100165, Article 100165</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</cites><orcidid>0000-0003-2534-0987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666496823000407$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Messaoudi, Abderrazek</creatorcontrib><creatorcontrib>Kiss, László Péter</creatorcontrib><creatorcontrib>Szeidl, György</creatorcontrib><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><title>Applications in engineering science</title><description>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</description><subject>Beam</subject><subject>Eigenvalue problem</subject><subject>Four-point boundary value problem</subject><subject>Green function</subject><subject>Heterogeneous</subject><subject>Vibrations</subject><issn>2666-4968</issn><issn>2666-4968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF9LwzAUxYMoOHTfwId8gc78aZv2RZChczDwRZ9Dkt5sKV1TknbitzezIj75EBIOOb977kHojpIVJbS8b1dqGDqIK0YYT1LSigu0YGVZZnldVpd_3tdoGWNLCGEVpZzTBZKbANBjO_VmdL6P2PqQzhSywbt-xNpPfaPCJz6pbgI8BK87OEb84cYDPg92Rs3G0eMDjBD8HnrwU8Qa1DHeoiurugjLn_sGvT8_va1fst3rZrt-3GWGl2LMat3UygplqrLSwIXWTSOKwoLmhIpCVLxSUHHNda7SD0ILpihreGl1RTQr-A3aztzGq1YOwR1TaOmVk9-CD3upwuhMBzKvVcM1FQkjclprTSy3LBcUippazhIrn1km-BgD2F8eJfLcuWzl3Lk8dy7nzpPtYbZB2vPkIMhoHPQGGhfAjCmI-x_wBQKjjcI</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Messaoudi, Abderrazek</creator><creator>Kiss, László Péter</creator><creator>Szeidl, György</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2534-0987</orcidid></search><sort><creationdate>202403</creationdate><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><author>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam</topic><topic>Eigenvalue problem</topic><topic>Four-point boundary value problem</topic><topic>Green function</topic><topic>Heterogeneous</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messaoudi, Abderrazek</creatorcontrib><creatorcontrib>Kiss, László Péter</creatorcontrib><creatorcontrib>Szeidl, György</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applications in engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messaoudi, Abderrazek</au><au>Kiss, László Péter</au><au>Szeidl, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green functions for four-point boundary value problems with applications to heterogeneous beams</atitle><jtitle>Applications in engineering science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>17</volume><spage>100165</spage><pages>100165-</pages><artnum>100165</artnum><issn>2666-4968</issn><eissn>2666-4968</eissn><abstract>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apples.2023.100165</doi><orcidid>https://orcid.org/0000-0003-2534-0987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-4968 |
ispartof | Applications in engineering science, 2024-03, Vol.17, p.100165, Article 100165 |
issn | 2666-4968 2666-4968 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32 |
source | ScienceDirect |
subjects | Beam Eigenvalue problem Four-point boundary value problem Green function Heterogeneous Vibrations |
title | Green functions for four-point boundary value problems with applications to heterogeneous beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20functions%20for%20four-point%20boundary%20value%20problems%20with%20applications%20to%20heterogeneous%20beams&rft.jtitle=Applications%20in%20engineering%20science&rft.au=Messaoudi,%20Abderrazek&rft.date=2024-03&rft.volume=17&rft.spage=100165&rft.pages=100165-&rft.artnum=100165&rft.issn=2666-4968&rft.eissn=2666-4968&rft_id=info:doi/10.1016/j.apples.2023.100165&rft_dat=%3Celsevier_doaj_%3ES2666496823000407%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |