Loading…

Green functions for four-point boundary value problems with applications to heterogeneous beams

The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneo...

Full description

Saved in:
Bibliographic Details
Published in:Applications in engineering science 2024-03, Vol.17, p.100165, Article 100165
Main Authors: Messaoudi, Abderrazek, Kiss, László Péter, Szeidl, György
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253
container_end_page
container_issue
container_start_page 100165
container_title Applications in engineering science
container_volume 17
creator Messaoudi, Abderrazek
Kiss, László Péter
Szeidl, György
description The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.
doi_str_mv 10.1016/j.apples.2023.100165
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666496823000407</els_id><doaj_id>oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32</doaj_id><sourcerecordid>S2666496823000407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOHTfwId8gc78aZv2RZChczDwRZ9Dkt5sKV1TknbitzezIj75EBIOOb977kHojpIVJbS8b1dqGDqIK0YYT1LSigu0YGVZZnldVpd_3tdoGWNLCGEVpZzTBZKbANBjO_VmdL6P2PqQzhSywbt-xNpPfaPCJz6pbgI8BK87OEb84cYDPg92Rs3G0eMDjBD8HnrwU8Qa1DHeoiurugjLn_sGvT8_va1fst3rZrt-3GWGl2LMat3UygplqrLSwIXWTSOKwoLmhIpCVLxSUHHNda7SD0ILpihreGl1RTQr-A3aztzGq1YOwR1TaOmVk9-CD3upwuhMBzKvVcM1FQkjclprTSy3LBcUippazhIrn1km-BgD2F8eJfLcuWzl3Lk8dy7nzpPtYbZB2vPkIMhoHPQGGhfAjCmI-x_wBQKjjcI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><source>ScienceDirect</source><creator>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</creator><creatorcontrib>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</creatorcontrib><description>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</description><identifier>ISSN: 2666-4968</identifier><identifier>EISSN: 2666-4968</identifier><identifier>DOI: 10.1016/j.apples.2023.100165</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam ; Eigenvalue problem ; Four-point boundary value problem ; Green function ; Heterogeneous ; Vibrations</subject><ispartof>Applications in engineering science, 2024-03, Vol.17, p.100165, Article 100165</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</cites><orcidid>0000-0003-2534-0987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666496823000407$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Messaoudi, Abderrazek</creatorcontrib><creatorcontrib>Kiss, László Péter</creatorcontrib><creatorcontrib>Szeidl, György</creatorcontrib><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><title>Applications in engineering science</title><description>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</description><subject>Beam</subject><subject>Eigenvalue problem</subject><subject>Four-point boundary value problem</subject><subject>Green function</subject><subject>Heterogeneous</subject><subject>Vibrations</subject><issn>2666-4968</issn><issn>2666-4968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF9LwzAUxYMoOHTfwId8gc78aZv2RZChczDwRZ9Dkt5sKV1TknbitzezIj75EBIOOb977kHojpIVJbS8b1dqGDqIK0YYT1LSigu0YGVZZnldVpd_3tdoGWNLCGEVpZzTBZKbANBjO_VmdL6P2PqQzhSywbt-xNpPfaPCJz6pbgI8BK87OEb84cYDPg92Rs3G0eMDjBD8HnrwU8Qa1DHeoiurugjLn_sGvT8_va1fst3rZrt-3GWGl2LMat3UygplqrLSwIXWTSOKwoLmhIpCVLxSUHHNda7SD0ILpihreGl1RTQr-A3aztzGq1YOwR1TaOmVk9-CD3upwuhMBzKvVcM1FQkjclprTSy3LBcUippazhIrn1km-BgD2F8eJfLcuWzl3Lk8dy7nzpPtYbZB2vPkIMhoHPQGGhfAjCmI-x_wBQKjjcI</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Messaoudi, Abderrazek</creator><creator>Kiss, László Péter</creator><creator>Szeidl, György</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2534-0987</orcidid></search><sort><creationdate>202403</creationdate><title>Green functions for four-point boundary value problems with applications to heterogeneous beams</title><author>Messaoudi, Abderrazek ; Kiss, László Péter ; Szeidl, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beam</topic><topic>Eigenvalue problem</topic><topic>Four-point boundary value problem</topic><topic>Green function</topic><topic>Heterogeneous</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messaoudi, Abderrazek</creatorcontrib><creatorcontrib>Kiss, László Péter</creatorcontrib><creatorcontrib>Szeidl, György</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applications in engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messaoudi, Abderrazek</au><au>Kiss, László Péter</au><au>Szeidl, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green functions for four-point boundary value problems with applications to heterogeneous beams</atitle><jtitle>Applications in engineering science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>17</volume><spage>100165</spage><pages>100165-</pages><artnum>100165</artnum><issn>2666-4968</issn><eissn>2666-4968</eissn><abstract>The main objective of this study is to define the Green functions for four-point boundary value problems. It is a further aim to clarify what properties the Green functions have and to present a method for calculating the elements of these Green functions. The examples are related to two heterogeneous beams with four supports: the (first) [second] beam is (fixed)[pinned] at the endpoints while the intermediate supports are two rollers. Determination of the eigenfrequencies leads to four-point eigenvalue problems associated with homogeneous boundary conditions. Utilizing the Green functions that belong to these eigenvalue problems we can transform those into eigenvalue problems governed by homogeneous Fredholm integral equations. Then a numerical solution is computed by reducing the homogeneous Fredholm integral equations into algebraic eigenvalue problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apples.2023.100165</doi><orcidid>https://orcid.org/0000-0003-2534-0987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-4968
ispartof Applications in engineering science, 2024-03, Vol.17, p.100165, Article 100165
issn 2666-4968
2666-4968
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_49ad3b178b07419bb0f3f2471e591f32
source ScienceDirect
subjects Beam
Eigenvalue problem
Four-point boundary value problem
Green function
Heterogeneous
Vibrations
title Green functions for four-point boundary value problems with applications to heterogeneous beams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20functions%20for%20four-point%20boundary%20value%20problems%20with%20applications%20to%20heterogeneous%20beams&rft.jtitle=Applications%20in%20engineering%20science&rft.au=Messaoudi,%20Abderrazek&rft.date=2024-03&rft.volume=17&rft.spage=100165&rft.pages=100165-&rft.artnum=100165&rft.issn=2666-4968&rft.eissn=2666-4968&rft_id=info:doi/10.1016/j.apples.2023.100165&rft_dat=%3Celsevier_doaj_%3ES2666496823000407%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-9bd9af7ac868be37bbdd755feb301757838ae83b3b4a68b0152a12d36fb80b253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true