Loading…
High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis
High temperature gas-cooled nuclear reactor (called HTR or HTGR) for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High temperature gas-cooled nuclear reactor (called HTR or HTGR) for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/20161000105 |