Loading…

Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant

The function of Retinoblastoma tumor suppressor (pRB) is greatly influenced by the cellular context, therefore the consequences of pRB inactivation are cell-type-specific. Here we employ single cell RNA-sequencing (scRNA-seq) to profile the impact of an Rbf mutation during Drosophila eye development...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-11, Vol.9 (1), p.5024-13, Article 5024
Main Authors: Ariss, Majd M., Islam, Abul B. M. M. K., Critcher, Meg, Zappia, Maria Paula, Frolov, Maxim V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The function of Retinoblastoma tumor suppressor (pRB) is greatly influenced by the cellular context, therefore the consequences of pRB inactivation are cell-type-specific. Here we employ single cell RNA-sequencing (scRNA-seq) to profile the impact of an Rbf mutation during Drosophila eye development. First, we build a catalogue of 11,500 wild type eye disc cells containing major known cell types. We find a transcriptional switch occurring in differentiating photoreceptors at the time of axonogenesis. Next, we map a cell landscape of Rbf mutant and identify a mutant-specific cell population that shows intracellular acidification due to increase in glycolytic activity. Genetic experiments demonstrate that such metabolic changes, restricted to this unique Rbf mutant population, sensitize cells to apoptosis and define the pattern of cell death in Rbf mutant eye disc. Thus, these results illustrate how scRNA-seq can be applied to dissect mutant phenotypes. The function of the Retinoblastoma (Rb) protein is regulated by its cellular environment. Here, the authors perform single cell RNA-sequencing during Drosophila eye development and identify the impact of an Rbf mutation, which sensitises specific cells to apoptosis by changing metabolism.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07540-z