Loading…
Isothermal calorimetry calscreener in the metabolism gauge of human malignant neoplastic cells: a burgeoning nexus in cancer biochemical metrology and diagnostics
Background At present, the function of isothermal microcalorimetry (IMC) calscreener in detecting alterations in the metabolic pathways of cancer cells remains unexplored. We disclosed the shortcomings of current screening methods and the need for precise and dependable instruments in the detection...
Saved in:
Published in: | Bulletin of the National Research Centre 2023-12, Vol.47 (1), p.120-11, Article 120 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
At present, the function of isothermal microcalorimetry (IMC) calscreener in detecting alterations in the metabolic pathways of cancer cells remains unexplored. We disclosed the shortcomings of current screening methods and the need for precise and dependable instruments in the detection and informed treatment of cancer via the IMC in relation to the experimental procedures required to obtain accurate results.
Main body of abstract
We examined the intricate technical aspects of isothermal calorimetry. The application of the IMC calscreener in cancer research is then discussed in depth, including how it can be used to evaluate the efficacy of treatments, identify metabolic inhibitors, and assess metabolic rates. We also investigated the diagnostic potential of isothermal calorimetry, particularly for early cancer detection and tracing therapy efficacy.
Conclusions
General findings shed light on the present issues and potential approaches for isothermal calorimetry application in cancer research and diagnosis. We underline the potential for isothermal calorimetry to fundamentally alter how to understand and treat cancer, as well as the need for additional studies to maximize its application in clinical settings. This in turn offers a thorough and fascinating account of the emerging relationship between isothermal calorimetry and cancer biochemistry, as well as its potential to revolutionize cancer detection and therapy. |
---|---|
ISSN: | 2522-8307 2522-8307 |
DOI: | 10.1186/s42269-023-01097-8 |