Loading…
Gapless Symmetry-Protected Topological Order
We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−...
Saved in:
Published in: | Physical review. X 2017-11, Vol.7 (4), p.041048, Article 041048 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13 |
container_end_page | |
container_issue | 4 |
container_start_page | 041048 |
container_title | Physical review. X |
container_volume | 7 |
creator | Scaffidi, Thomas Parker, Daniel E. Vasseur, Romain |
description | We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−1 ) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics. |
doi_str_mv | 10.1103/PhysRevX.7.041048 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a03810fd9254389858a4fa8891d7047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a03810fd9254389858a4fa8891d7047</doaj_id><sourcerecordid>2550610004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqf0B3ope3ZrJxyZ7lKK1UGjRCt5CNsm2W7ZNTVZh_73RVXEuMwyPN-_NQ-gS8AQA09vVtotP7uN1IiaYAWbyBA0I5DijFMvTf_M5GsW4w6lyDEyIAbqZ6WPjYhw_d_u9a0OXrYJvnWmdHa_90Td-UxvdjJfBunCBzirdRDf66UP08nC_nj5mi-VsPr1bZIZx0WaEE61ZJSpbJjGguSAAlgprGQZXQWlkURhiuNHaYF1SyywFS4DhUrAK6BDNe17r9U4dQ73XoVNe1-p74cNG6dDWpnGKaUwl4MoWhDMqC8llOq2lLMAKzETiuuq5fGxrFU2dzG2NPxySRwUMSMHyBLruQcfg395dbNXOv4dD8qgI5ziH9DGWUNCjTPAxBlf9SQOsvoJQv0Eoofog6CcWlnpB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550610004</pqid></control><display><type>article</type><title>Gapless Symmetry-Protected Topological Order</title><source>Publicly Available Content (ProQuest)</source><creator>Scaffidi, Thomas ; Parker, Daniel E. ; Vasseur, Romain</creator><creatorcontrib>Scaffidi, Thomas ; Parker, Daniel E. ; Vasseur, Romain ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−1 ) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.7.041048</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Condensed matter physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Critical point ; Domain walls ; Energy gap ; Field theory ; Lattice vibration ; Metalloids ; Perturbation ; Symmetry ; Topology ; Wave functions</subject><ispartof>Physical review. X, 2017-11, Vol.7 (4), p.041048, Article 041048</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13</citedby><cites>FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550610004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,44588</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1412946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Scaffidi, Thomas</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Gapless Symmetry-Protected Topological Order</title><title>Physical review. X</title><description>We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−1 ) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.</description><subject>Condensed matter physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Critical point</subject><subject>Domain walls</subject><subject>Energy gap</subject><subject>Field theory</subject><subject>Lattice vibration</subject><subject>Metalloids</subject><subject>Perturbation</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Wave functions</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqf0B3ope3ZrJxyZ7lKK1UGjRCt5CNsm2W7ZNTVZh_73RVXEuMwyPN-_NQ-gS8AQA09vVtotP7uN1IiaYAWbyBA0I5DijFMvTf_M5GsW4w6lyDEyIAbqZ6WPjYhw_d_u9a0OXrYJvnWmdHa_90Td-UxvdjJfBunCBzirdRDf66UP08nC_nj5mi-VsPr1bZIZx0WaEE61ZJSpbJjGguSAAlgprGQZXQWlkURhiuNHaYF1SyywFS4DhUrAK6BDNe17r9U4dQ73XoVNe1-p74cNG6dDWpnGKaUwl4MoWhDMqC8llOq2lLMAKzETiuuq5fGxrFU2dzG2NPxySRwUMSMHyBLruQcfg395dbNXOv4dD8qgI5ziH9DGWUNCjTPAxBlf9SQOsvoJQv0Eoofog6CcWlnpB</recordid><startdate>20171129</startdate><enddate>20171129</enddate><creator>Scaffidi, Thomas</creator><creator>Parker, Daniel E.</creator><creator>Vasseur, Romain</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20171129</creationdate><title>Gapless Symmetry-Protected Topological Order</title><author>Scaffidi, Thomas ; Parker, Daniel E. ; Vasseur, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed matter physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Critical point</topic><topic>Domain walls</topic><topic>Energy gap</topic><topic>Field theory</topic><topic>Lattice vibration</topic><topic>Metalloids</topic><topic>Perturbation</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scaffidi, Thomas</creatorcontrib><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Vasseur, Romain</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scaffidi, Thomas</au><au>Parker, Daniel E.</au><au>Vasseur, Romain</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapless Symmetry-Protected Topological Order</atitle><jtitle>Physical review. X</jtitle><date>2017-11-29</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>041048</spage><pages>041048-</pages><artnum>041048</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d−1 ) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.7.041048</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2017-11, Vol.7 (4), p.041048, Article 041048 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a03810fd9254389858a4fa8891d7047 |
source | Publicly Available Content (ProQuest) |
subjects | Condensed matter physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Critical point Domain walls Energy gap Field theory Lattice vibration Metalloids Perturbation Symmetry Topology Wave functions |
title | Gapless Symmetry-Protected Topological Order |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapless%20Symmetry-Protected%20Topological%20Order&rft.jtitle=Physical%20review.%20X&rft.au=Scaffidi,%20Thomas&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-11-29&rft.volume=7&rft.issue=4&rft.spage=041048&rft.pages=041048-&rft.artnum=041048&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.7.041048&rft_dat=%3Cproquest_doaj_%3E2550610004%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-252aa4f7fdb1041a57211d37dd401ef1bc899c2c5caac0ab3d4d31d2140b74f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550610004&rft_id=info:pmid/&rfr_iscdi=true |