Loading…

A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules

Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interac...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2023-01, Vol.12 (2), p.238
Main Authors: Guo, Wenhan, Ale, Tolulope Ayodeji, Sun, Shengjie, Sanchez, Jason E, Li, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3
cites cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3
container_end_page
container_issue 2
container_start_page 238
container_title Cells (Basel, Switzerland)
container_volume 12
creator Guo, Wenhan
Ale, Tolulope Ayodeji
Sun, Shengjie
Sanchez, Jason E
Li, Lin
description Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.
doi_str_mv 10.3390/cells12020238
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895</doaj_id><sourcerecordid>2768228596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</originalsourceid><addsrcrecordid>eNpdks9rHCEUx6U0NCHJsdcy0Esv0_pz1EshLGkbSGkg6VnUeZN1mR236oTkv6-b3YZs9fDU74cvz_ceQu8J_syYxl88jGMmFNfN1Bt0QrFkLedYv311PkbnOa9wXYp0BIt36Jh1naRE0hPkLppFXG8SLGHK4QGa2zL3T02cmrKE5nIEX1LMxZbgm5sUN5BKgNzEobmb3TyGqd3HZ5sRHqtYLz-DT7FsFchn6GiwY4bzfTxFv79d3i1-tNe_vl8tLq5bzxUpLdeCM2GFF1wJRpSXyjOLqRs6NjinBRGU6J4SAr0jtEqDYpZ5z6RjtvfsFF3tfPtoV2aTwtqmJxNtMM8PMd0bW7P3IxhusXekFkEJy50TDoNgTmJtRd8pLarX153XZnZr6D1MJdnxwPRQmcLS3McHo5WQtR3V4NPeIMU_M-Ri1iFv22UniHM2VHaKUiV0V9GP_6GrOKeplmpLSaKk4rxS7Y6qhc05wfCSDMFmOwzmYBgq_-H1D17of61nfwEXiLDG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767187844</pqid></control><display><type>article</type><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</creator><creatorcontrib>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</creatorcontrib><description>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</description><identifier>ISSN: 2073-4409</identifier><identifier>EISSN: 2073-4409</identifier><identifier>DOI: 10.3390/cells12020238</identifier><identifier>PMID: 36672172</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell cycle ; DelPhi ; DelPhiForce ; Electric fields ; Electrostatic properties ; Hydrogen bonds ; Interfaces ; microtubule ; Microtubules ; Microtubules - metabolism ; molecular dynamics simulation ; Monomers ; Neurodegenerative diseases ; Organelles ; protein-protein interactions ; Proteins ; Simulation ; Static Electricity ; Therapeutic targets ; Tubulin ; Tubulin - metabolism</subject><ispartof>Cells (Basel, Switzerland), 2023-01, Vol.12 (2), p.238</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</citedby><cites>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</cites><orcidid>0000-0001-6447-2398 ; 0000-0002-6767-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767187844?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767187844?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36672172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Wenhan</creatorcontrib><creatorcontrib>Ale, Tolulope Ayodeji</creatorcontrib><creatorcontrib>Sun, Shengjie</creatorcontrib><creatorcontrib>Sanchez, Jason E</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><title>Cells (Basel, Switzerland)</title><addtitle>Cells</addtitle><description>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</description><subject>Cell cycle</subject><subject>DelPhi</subject><subject>DelPhiForce</subject><subject>Electric fields</subject><subject>Electrostatic properties</subject><subject>Hydrogen bonds</subject><subject>Interfaces</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>molecular dynamics simulation</subject><subject>Monomers</subject><subject>Neurodegenerative diseases</subject><subject>Organelles</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Therapeutic targets</subject><subject>Tubulin</subject><subject>Tubulin - metabolism</subject><issn>2073-4409</issn><issn>2073-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rHCEUx6U0NCHJsdcy0Esv0_pz1EshLGkbSGkg6VnUeZN1mR236oTkv6-b3YZs9fDU74cvz_ceQu8J_syYxl88jGMmFNfN1Bt0QrFkLedYv311PkbnOa9wXYp0BIt36Jh1naRE0hPkLppFXG8SLGHK4QGa2zL3T02cmrKE5nIEX1LMxZbgm5sUN5BKgNzEobmb3TyGqd3HZ5sRHqtYLz-DT7FsFchn6GiwY4bzfTxFv79d3i1-tNe_vl8tLq5bzxUpLdeCM2GFF1wJRpSXyjOLqRs6NjinBRGU6J4SAr0jtEqDYpZ5z6RjtvfsFF3tfPtoV2aTwtqmJxNtMM8PMd0bW7P3IxhusXekFkEJy50TDoNgTmJtRd8pLarX153XZnZr6D1MJdnxwPRQmcLS3McHo5WQtR3V4NPeIMU_M-Ri1iFv22UniHM2VHaKUiV0V9GP_6GrOKeplmpLSaKk4rxS7Y6qhc05wfCSDMFmOwzmYBgq_-H1D17of61nfwEXiLDG</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Guo, Wenhan</creator><creator>Ale, Tolulope Ayodeji</creator><creator>Sun, Shengjie</creator><creator>Sanchez, Jason E</creator><creator>Li, Lin</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6447-2398</orcidid><orcidid>https://orcid.org/0000-0002-6767-075X</orcidid></search><sort><creationdate>20230105</creationdate><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><author>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell cycle</topic><topic>DelPhi</topic><topic>DelPhiForce</topic><topic>Electric fields</topic><topic>Electrostatic properties</topic><topic>Hydrogen bonds</topic><topic>Interfaces</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>molecular dynamics simulation</topic><topic>Monomers</topic><topic>Neurodegenerative diseases</topic><topic>Organelles</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Therapeutic targets</topic><topic>Tubulin</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wenhan</creatorcontrib><creatorcontrib>Ale, Tolulope Ayodeji</creatorcontrib><creatorcontrib>Sun, Shengjie</creatorcontrib><creatorcontrib>Sanchez, Jason E</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cells (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wenhan</au><au>Ale, Tolulope Ayodeji</au><au>Sun, Shengjie</au><au>Sanchez, Jason E</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</atitle><jtitle>Cells (Basel, Switzerland)</jtitle><addtitle>Cells</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>238</spage><pages>238-</pages><issn>2073-4409</issn><eissn>2073-4409</eissn><abstract>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36672172</pmid><doi>10.3390/cells12020238</doi><orcidid>https://orcid.org/0000-0001-6447-2398</orcidid><orcidid>https://orcid.org/0000-0002-6767-075X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4409
ispartof Cells (Basel, Switzerland), 2023-01, Vol.12 (2), p.238
issn 2073-4409
2073-4409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database
subjects Cell cycle
DelPhi
DelPhiForce
Electric fields
Electrostatic properties
Hydrogen bonds
Interfaces
microtubule
Microtubules
Microtubules - metabolism
molecular dynamics simulation
Monomers
Neurodegenerative diseases
Organelles
protein-protein interactions
Proteins
Simulation
Static Electricity
Therapeutic targets
Tubulin
Tubulin - metabolism
title A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Study%20on%20the%20Electrostatic%20Properties%20of%20Tubulin-Tubulin%20Complexes%20in%20Microtubules&rft.jtitle=Cells%20(Basel,%20Switzerland)&rft.au=Guo,%20Wenhan&rft.date=2023-01-05&rft.volume=12&rft.issue=2&rft.spage=238&rft.pages=238-&rft.issn=2073-4409&rft.eissn=2073-4409&rft_id=info:doi/10.3390/cells12020238&rft_dat=%3Cproquest_doaj_%3E2768228596%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767187844&rft_id=info:pmid/36672172&rfr_iscdi=true