Loading…
A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules
Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interac...
Saved in:
Published in: | Cells (Basel, Switzerland) Switzerland), 2023-01, Vol.12 (2), p.238 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3 |
container_end_page | |
container_issue | 2 |
container_start_page | 238 |
container_title | Cells (Basel, Switzerland) |
container_volume | 12 |
creator | Guo, Wenhan Ale, Tolulope Ayodeji Sun, Shengjie Sanchez, Jason E Li, Lin |
description | Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells. |
doi_str_mv | 10.3390/cells12020238 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895</doaj_id><sourcerecordid>2768228596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</originalsourceid><addsrcrecordid>eNpdks9rHCEUx6U0NCHJsdcy0Esv0_pz1EshLGkbSGkg6VnUeZN1mR236oTkv6-b3YZs9fDU74cvz_ceQu8J_syYxl88jGMmFNfN1Bt0QrFkLedYv311PkbnOa9wXYp0BIt36Jh1naRE0hPkLppFXG8SLGHK4QGa2zL3T02cmrKE5nIEX1LMxZbgm5sUN5BKgNzEobmb3TyGqd3HZ5sRHqtYLz-DT7FsFchn6GiwY4bzfTxFv79d3i1-tNe_vl8tLq5bzxUpLdeCM2GFF1wJRpSXyjOLqRs6NjinBRGU6J4SAr0jtEqDYpZ5z6RjtvfsFF3tfPtoV2aTwtqmJxNtMM8PMd0bW7P3IxhusXekFkEJy50TDoNgTmJtRd8pLarX153XZnZr6D1MJdnxwPRQmcLS3McHo5WQtR3V4NPeIMU_M-Ri1iFv22UniHM2VHaKUiV0V9GP_6GrOKeplmpLSaKk4rxS7Y6qhc05wfCSDMFmOwzmYBgq_-H1D17of61nfwEXiLDG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767187844</pqid></control><display><type>article</type><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Coronavirus Research Database</source><creator>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</creator><creatorcontrib>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</creatorcontrib><description>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</description><identifier>ISSN: 2073-4409</identifier><identifier>EISSN: 2073-4409</identifier><identifier>DOI: 10.3390/cells12020238</identifier><identifier>PMID: 36672172</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cell cycle ; DelPhi ; DelPhiForce ; Electric fields ; Electrostatic properties ; Hydrogen bonds ; Interfaces ; microtubule ; Microtubules ; Microtubules - metabolism ; molecular dynamics simulation ; Monomers ; Neurodegenerative diseases ; Organelles ; protein-protein interactions ; Proteins ; Simulation ; Static Electricity ; Therapeutic targets ; Tubulin ; Tubulin - metabolism</subject><ispartof>Cells (Basel, Switzerland), 2023-01, Vol.12 (2), p.238</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</citedby><cites>FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</cites><orcidid>0000-0001-6447-2398 ; 0000-0002-6767-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767187844?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767187844?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36672172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Wenhan</creatorcontrib><creatorcontrib>Ale, Tolulope Ayodeji</creatorcontrib><creatorcontrib>Sun, Shengjie</creatorcontrib><creatorcontrib>Sanchez, Jason E</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><title>Cells (Basel, Switzerland)</title><addtitle>Cells</addtitle><description>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</description><subject>Cell cycle</subject><subject>DelPhi</subject><subject>DelPhiForce</subject><subject>Electric fields</subject><subject>Electrostatic properties</subject><subject>Hydrogen bonds</subject><subject>Interfaces</subject><subject>microtubule</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>molecular dynamics simulation</subject><subject>Monomers</subject><subject>Neurodegenerative diseases</subject><subject>Organelles</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Therapeutic targets</subject><subject>Tubulin</subject><subject>Tubulin - metabolism</subject><issn>2073-4409</issn><issn>2073-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9rHCEUx6U0NCHJsdcy0Esv0_pz1EshLGkbSGkg6VnUeZN1mR236oTkv6-b3YZs9fDU74cvz_ceQu8J_syYxl88jGMmFNfN1Bt0QrFkLedYv311PkbnOa9wXYp0BIt36Jh1naRE0hPkLppFXG8SLGHK4QGa2zL3T02cmrKE5nIEX1LMxZbgm5sUN5BKgNzEobmb3TyGqd3HZ5sRHqtYLz-DT7FsFchn6GiwY4bzfTxFv79d3i1-tNe_vl8tLq5bzxUpLdeCM2GFF1wJRpSXyjOLqRs6NjinBRGU6J4SAr0jtEqDYpZ5z6RjtvfsFF3tfPtoV2aTwtqmJxNtMM8PMd0bW7P3IxhusXekFkEJy50TDoNgTmJtRd8pLarX153XZnZr6D1MJdnxwPRQmcLS3McHo5WQtR3V4NPeIMU_M-Ri1iFv22UniHM2VHaKUiV0V9GP_6GrOKeplmpLSaKk4rxS7Y6qhc05wfCSDMFmOwzmYBgq_-H1D17of61nfwEXiLDG</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Guo, Wenhan</creator><creator>Ale, Tolulope Ayodeji</creator><creator>Sun, Shengjie</creator><creator>Sanchez, Jason E</creator><creator>Li, Lin</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6447-2398</orcidid><orcidid>https://orcid.org/0000-0002-6767-075X</orcidid></search><sort><creationdate>20230105</creationdate><title>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</title><author>Guo, Wenhan ; Ale, Tolulope Ayodeji ; Sun, Shengjie ; Sanchez, Jason E ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell cycle</topic><topic>DelPhi</topic><topic>DelPhiForce</topic><topic>Electric fields</topic><topic>Electrostatic properties</topic><topic>Hydrogen bonds</topic><topic>Interfaces</topic><topic>microtubule</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>molecular dynamics simulation</topic><topic>Monomers</topic><topic>Neurodegenerative diseases</topic><topic>Organelles</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Therapeutic targets</topic><topic>Tubulin</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wenhan</creatorcontrib><creatorcontrib>Ale, Tolulope Ayodeji</creatorcontrib><creatorcontrib>Sun, Shengjie</creatorcontrib><creatorcontrib>Sanchez, Jason E</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cells (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wenhan</au><au>Ale, Tolulope Ayodeji</au><au>Sun, Shengjie</au><au>Sanchez, Jason E</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules</atitle><jtitle>Cells (Basel, Switzerland)</jtitle><addtitle>Cells</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>12</volume><issue>2</issue><spage>238</spage><pages>238-</pages><issn>2073-4409</issn><eissn>2073-4409</eissn><abstract>Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36672172</pmid><doi>10.3390/cells12020238</doi><orcidid>https://orcid.org/0000-0001-6447-2398</orcidid><orcidid>https://orcid.org/0000-0002-6767-075X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4409 |
ispartof | Cells (Basel, Switzerland), 2023-01, Vol.12 (2), p.238 |
issn | 2073-4409 2073-4409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a0cb166785a4bb5b0e53b709a5d6895 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Coronavirus Research Database |
subjects | Cell cycle DelPhi DelPhiForce Electric fields Electrostatic properties Hydrogen bonds Interfaces microtubule Microtubules Microtubules - metabolism molecular dynamics simulation Monomers Neurodegenerative diseases Organelles protein-protein interactions Proteins Simulation Static Electricity Therapeutic targets Tubulin Tubulin - metabolism |
title | A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Study%20on%20the%20Electrostatic%20Properties%20of%20Tubulin-Tubulin%20Complexes%20in%20Microtubules&rft.jtitle=Cells%20(Basel,%20Switzerland)&rft.au=Guo,%20Wenhan&rft.date=2023-01-05&rft.volume=12&rft.issue=2&rft.spage=238&rft.pages=238-&rft.issn=2073-4409&rft.eissn=2073-4409&rft_id=info:doi/10.3390/cells12020238&rft_dat=%3Cproquest_doaj_%3E2768228596%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-495435a5c5485318c78c3a02bf63fbb9515219d211edb123a0f83a3cc37b3adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767187844&rft_id=info:pmid/36672172&rfr_iscdi=true |