Loading…
Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems
We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov funct...
Saved in:
Published in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.661-670 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3 |
container_end_page | 670 |
container_issue | 2013 |
container_start_page | 661 |
container_title | Abstract and Applied Analysis |
container_volume | 2013 |
creator | Wu, Min Lin, Wang Yang, Zhengfeng |
description | We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm. |
doi_str_mv | 10.1155/2013/146137 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a414ee8c0c746fe8cf435cecb02b431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369793935</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_661_670</airiti_id><doaj_id>oai_doaj_org_article_4a414ee8c0c746fe8cf435cecb02b431</doaj_id><sourcerecordid>A369793935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3</originalsourceid><addsrcrecordid>eNqFUcFu1DAQjRBIlMKJM1LOoLTj2I6dG9FqaSutAFF6RNasYy9eZeOV7Qry9zibVaWekA_zZvzmzdivKN4TuCKE8-saCL0mrCFUvCguSCNFBQzalxmD5BWlgr8u3sS4BwAqGLsofq3_ok5lF6fDMfnkdHmfcOsGl6ayG3GYoosljn35w-ycHytvqy6lkHtyVq5jcgc8QetD-dWPgxsNhvJ-iskc4tvilcUhmnfneFk8fFn_XN1Wm283d6tuUyHnMlW6tiBawmoqra6F5hQkk1K0xhpjdavbbQbCAKBhPTKhSV1vJQoqCWloTy-Lu0W397hXx5CXCpPy6NSp4MNOYciPG4xiyAgzRmrQgjU2A8so10Zvod4ySrLW50XrGPze6GQe9eD6Z6Krh825eg6IqAhtKSdE1jJLXC0SO8wT3Wj9_GP59ObgtB-Ndbne0aYV7dyVGz4tDTr4GIOxT-MIqNlZNTurFmcz--PC_u3GHv-4_5A_LGSTKcbiE5mxlop5181yjy645NTeP4bse1Tfs0oDsuYA5KRIanUqtSAAGv48aRqiGgH0H1NvwhI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><creator>Wu, Min ; Lin, Wang ; Yang, Zhengfeng</creator><contributor>Camilli, Fabio M.</contributor><creatorcontrib>Wu, Min ; Lin, Wang ; Yang, Zhengfeng ; Camilli, Fabio M.</creatorcontrib><description>We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/146137</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Dynamical systems ; Liapunov functions ; Linear programming ; Mathematical research ; Nonlinear theories</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.661-670</ispartof><rights>Copyright © 2013 Min Wu et al.</rights><rights>COPYRIGHT 2013 John Wiley & Sons, Inc.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3</citedby><cites>FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3</cites><orcidid>0000-0003-4467-2186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><contributor>Camilli, Fabio M.</contributor><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Lin, Wang</creatorcontrib><creatorcontrib>Yang, Zhengfeng</creatorcontrib><title>Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems</title><title>Abstract and Applied Analysis</title><description>We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.</description><subject>Dynamical systems</subject><subject>Liapunov functions</subject><subject>Linear programming</subject><subject>Mathematical research</subject><subject>Nonlinear theories</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUcFu1DAQjRBIlMKJM1LOoLTj2I6dG9FqaSutAFF6RNasYy9eZeOV7Qry9zibVaWekA_zZvzmzdivKN4TuCKE8-saCL0mrCFUvCguSCNFBQzalxmD5BWlgr8u3sS4BwAqGLsofq3_ok5lF6fDMfnkdHmfcOsGl6ayG3GYoosljn35w-ycHytvqy6lkHtyVq5jcgc8QetD-dWPgxsNhvJ-iskc4tvilcUhmnfneFk8fFn_XN1Wm283d6tuUyHnMlW6tiBawmoqra6F5hQkk1K0xhpjdavbbQbCAKBhPTKhSV1vJQoqCWloTy-Lu0W397hXx5CXCpPy6NSp4MNOYciPG4xiyAgzRmrQgjU2A8so10Zvod4ySrLW50XrGPze6GQe9eD6Z6Krh825eg6IqAhtKSdE1jJLXC0SO8wT3Wj9_GP59ObgtB-Ndbne0aYV7dyVGz4tDTr4GIOxT-MIqNlZNTurFmcz--PC_u3GHv-4_5A_LGSTKcbiE5mxlop5181yjy645NTeP4bse1Tfs0oDsuYA5KRIanUqtSAAGv48aRqiGgH0H1NvwhI</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Wu, Min</creator><creator>Lin, Wang</creator><creator>Yang, Zhengfeng</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4467-2186</orcidid></search><sort><creationdate>20130101</creationdate><title>Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems</title><author>Wu, Min ; Lin, Wang ; Yang, Zhengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dynamical systems</topic><topic>Liapunov functions</topic><topic>Linear programming</topic><topic>Mathematical research</topic><topic>Nonlinear theories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Lin, Wang</creatorcontrib><creatorcontrib>Yang, Zhengfeng</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Min</au><au>Lin, Wang</au><au>Yang, Zhengfeng</au><au>Camilli, Fabio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>661</spage><epage>670</epage><pages>661-670</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/146137</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4467-2186</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.661-670 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a414ee8c0c746fe8cf435cecb02b431 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest) |
subjects | Dynamical systems Liapunov functions Linear programming Mathematical research Nonlinear theories |
title | Exact Asymptotic Stability Analysis and Region-of-Attraction Estimation for Nonlinear Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Asymptotic%20Stability%20Analysis%20and%20Region-of-Attraction%20Estimation%20for%20Nonlinear%20Systems&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Wu,%20Min&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=661&rft.epage=670&rft.pages=661-670&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/146137&rft_dat=%3Cgale_doaj_%3EA369793935%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a558t-c2f07914238fc27c530848879efeefc9c9bfee7e00ae4da47c122b8a7381163d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A369793935&rft_airiti_id=P20160825001_201312_201609070065_201609070065_661_670&rfr_iscdi=true |