Loading…

Classification of Hyperspectral Reflectance Images With Physical and Statistical Criteria

A classification method of hyperspectral reflectance images named CHRIPS (Classification of Hyperspectral Reflectance Images with Physical and Statistical criteria) is presented. This method aims at classifying each pixel from a given set of thirteen classes: unidentified dark surface, water, plasti...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-07, Vol.12 (14), p.2335
Main Authors: Alakian, Alexandre, Achard, Véronique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A classification method of hyperspectral reflectance images named CHRIPS (Classification of Hyperspectral Reflectance Images with Physical and Statistical criteria) is presented. This method aims at classifying each pixel from a given set of thirteen classes: unidentified dark surface, water, plastic matter, carbonate, clay, vegetation (dark green, dense green, sparse green, stressed), house roof/tile, asphalt, vehicle/paint/metal surface and non-carbonated gravel. Each class is characterized by physical criteria (detection of specific absorptions or shape features) or statistical criteria (use of dedicated spectral indices) over spectral reflectance. CHRIPS input is a hyperspectral reflectance image covering the spectral range [400–2500 nm]. The presented method has four advantages, namely: (i) is robust in transfer, class identification is based on criteria that are not very sensitive to sensor type; (ii) does not require training, criteria are pre-defined; (iii) includes a reject class, this class reduces misclassifications; (iv) high precision and recall, F 1 score is generally above 0.9 in our test. As the number of classes is limited, CHRIPS could be used in combination with other classification algorithms able to process the reject class in order to decrease the number of unclassified pixels.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12142335