Loading…
mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype
Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ fr...
Saved in:
Published in: | Scientific reports 2022-05, Vol.12 (1), p.8982-8982, Article 8982 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3 |
container_end_page | 8982 |
container_issue | 1 |
container_start_page | 8982 |
container_title | Scientific reports |
container_volume | 12 |
creator | de Souza, Jessica M. Ferreira-Vieira, Talita H. Maciel, Esther M. A. Silva, Nathalia C. Lima, Izabella B. Quirino Doria, Juliana G. Olmo, Isabella G. Ribeiro, Fabiola M. |
description | Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5
−/−
, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5
−/−
/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5
−/−
mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5
−/−
mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5
−/−
and BACHD/mGluR5
−/−
mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD. |
doi_str_mv | 10.1038/s41598-022-13029-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c</doaj_id><sourcerecordid>2672323283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEotXSF-CALHHhkuKvfPiChCpoK1VCQnC2Jvbs1qvEDnZSaffEa_B6PAnepi0tB3wZa-bvnz2ef1G8ZvSUUdG-T5JVqi0p5yUTlKty_6w45lRWJRecP3-0PypOUtrSvCquJFMviyNR1VI0jTou9sN5P3-tCHQ9TC540iPYRKZAYINlxJxFS9LOwzg5Q8YeUo5u2hE3jODigH5KBLwlNmAiPkyHQgw3SC5mPzm_mYL__fNXItYlhIRkvMas2o34qnixhj7hyV1cFd8_f_p2dlFefTm_PPt4VRrRVvtS0kZ2gkJXUwacMVhzgE51HTWMKoHSGFNLaRsmO1u3aHjT0Fq2vFMWLQOxKi4Xrg2w1WN0A8SdDuD0bSLEjYaYm-pRS2hMnRdTlZSgTGdAGMMyypjMNJn1YWGNczegNbn7CP0T6NOKd9d6E260YrIVeXCr4t0dIIYfM6ZJDy4Z7HvwGOaked3kmQneiix9-490G-bo81cdVLQRolFVVvFFZWJIKeL64TGM6oNT9OIUnZ2ib52i9_nQm8dtPBy590UWiEWQcslvMP69-z_YPy5xzYE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670733795</pqid></control><display><type>article</type><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</creator><creatorcontrib>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</creatorcontrib><description>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5
−/−
, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5
−/−
/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5
−/−
mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5
−/−
mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5
−/−
and BACHD/mGluR5
−/−
mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-13029-z</identifier><identifier>PMID: 35643779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595 ; 631/378/1686 ; 631/378/1689 ; 631/378/1934 ; 631/378/2591 ; 631/378/2611 ; 631/378/2612 ; 631/378/340 ; Ablation ; Aging ; Animals ; Brain - metabolism ; Brain-derived neurotrophic factor ; Cell signaling ; Dendritic spines ; Glutamate receptors ; Glutamic acid receptors (metabotropic) ; Humanities and Social Sciences ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington's disease ; Huntingtons disease ; Memory Disorders - genetics ; Memory Disorders - metabolism ; Mice ; Molecular modelling ; multidisciplinary ; Neurodegenerative diseases ; Neurodegenerative Diseases - metabolism ; Neurological diseases ; Neuronal Plasticity ; Phenotype ; Phenotypes ; Postsynaptic density proteins ; Science ; Science (multidisciplinary) ; Signal transduction ; Spine ; Synaptic plasticity</subject><ispartof>Scientific reports, 2022-05, Vol.12 (1), p.8982-8982, Article 8982</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</citedby><cites>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</cites><orcidid>0000-0001-7042-9433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670733795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670733795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35643779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Jessica M.</creatorcontrib><creatorcontrib>Ferreira-Vieira, Talita H.</creatorcontrib><creatorcontrib>Maciel, Esther M. A.</creatorcontrib><creatorcontrib>Silva, Nathalia C.</creatorcontrib><creatorcontrib>Lima, Izabella B. Quirino</creatorcontrib><creatorcontrib>Doria, Juliana G.</creatorcontrib><creatorcontrib>Olmo, Isabella G.</creatorcontrib><creatorcontrib>Ribeiro, Fabiola M.</creatorcontrib><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5
−/−
, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5
−/−
/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5
−/−
mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5
−/−
mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5
−/−
and BACHD/mGluR5
−/−
mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</description><subject>631/378/1595</subject><subject>631/378/1686</subject><subject>631/378/1689</subject><subject>631/378/1934</subject><subject>631/378/2591</subject><subject>631/378/2611</subject><subject>631/378/2612</subject><subject>631/378/340</subject><subject>Ablation</subject><subject>Aging</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain-derived neurotrophic factor</subject><subject>Cell signaling</subject><subject>Dendritic spines</subject><subject>Glutamate receptors</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Humanities and Social Sciences</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Memory Disorders - genetics</subject><subject>Memory Disorders - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Neurodegenerative diseases</subject><subject>Neurodegenerative Diseases - metabolism</subject><subject>Neurological diseases</subject><subject>Neuronal Plasticity</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Postsynaptic density proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Spine</subject><subject>Synaptic plasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEotXSF-CALHHhkuKvfPiChCpoK1VCQnC2Jvbs1qvEDnZSaffEa_B6PAnepi0tB3wZa-bvnz2ef1G8ZvSUUdG-T5JVqi0p5yUTlKty_6w45lRWJRecP3-0PypOUtrSvCquJFMviyNR1VI0jTou9sN5P3-tCHQ9TC540iPYRKZAYINlxJxFS9LOwzg5Q8YeUo5u2hE3jODigH5KBLwlNmAiPkyHQgw3SC5mPzm_mYL__fNXItYlhIRkvMas2o34qnixhj7hyV1cFd8_f_p2dlFefTm_PPt4VRrRVvtS0kZ2gkJXUwacMVhzgE51HTWMKoHSGFNLaRsmO1u3aHjT0Fq2vFMWLQOxKi4Xrg2w1WN0A8SdDuD0bSLEjYaYm-pRS2hMnRdTlZSgTGdAGMMyypjMNJn1YWGNczegNbn7CP0T6NOKd9d6E260YrIVeXCr4t0dIIYfM6ZJDy4Z7HvwGOaked3kmQneiix9-490G-bo81cdVLQRolFVVvFFZWJIKeL64TGM6oNT9OIUnZ2ib52i9_nQm8dtPBy590UWiEWQcslvMP69-z_YPy5xzYE</recordid><startdate>20220528</startdate><enddate>20220528</enddate><creator>de Souza, Jessica M.</creator><creator>Ferreira-Vieira, Talita H.</creator><creator>Maciel, Esther M. A.</creator><creator>Silva, Nathalia C.</creator><creator>Lima, Izabella B. Quirino</creator><creator>Doria, Juliana G.</creator><creator>Olmo, Isabella G.</creator><creator>Ribeiro, Fabiola M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7042-9433</orcidid></search><sort><creationdate>20220528</creationdate><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><author>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/1595</topic><topic>631/378/1686</topic><topic>631/378/1689</topic><topic>631/378/1934</topic><topic>631/378/2591</topic><topic>631/378/2611</topic><topic>631/378/2612</topic><topic>631/378/340</topic><topic>Ablation</topic><topic>Aging</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain-derived neurotrophic factor</topic><topic>Cell signaling</topic><topic>Dendritic spines</topic><topic>Glutamate receptors</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Humanities and Social Sciences</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Memory Disorders - genetics</topic><topic>Memory Disorders - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Neurodegenerative diseases</topic><topic>Neurodegenerative Diseases - metabolism</topic><topic>Neurological diseases</topic><topic>Neuronal Plasticity</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Postsynaptic density proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Spine</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Jessica M.</creatorcontrib><creatorcontrib>Ferreira-Vieira, Talita H.</creatorcontrib><creatorcontrib>Maciel, Esther M. A.</creatorcontrib><creatorcontrib>Silva, Nathalia C.</creatorcontrib><creatorcontrib>Lima, Izabella B. Quirino</creatorcontrib><creatorcontrib>Doria, Juliana G.</creatorcontrib><creatorcontrib>Olmo, Isabella G.</creatorcontrib><creatorcontrib>Ribeiro, Fabiola M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Jessica M.</au><au>Ferreira-Vieira, Talita H.</au><au>Maciel, Esther M. A.</au><au>Silva, Nathalia C.</au><au>Lima, Izabella B. Quirino</au><au>Doria, Juliana G.</au><au>Olmo, Isabella G.</au><au>Ribeiro, Fabiola M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-05-28</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>8982</spage><epage>8982</epage><pages>8982-8982</pages><artnum>8982</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5
−/−
, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5
−/−
/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5
−/−
mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5
−/−
mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5
−/−
and BACHD/mGluR5
−/−
mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35643779</pmid><doi>10.1038/s41598-022-13029-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7042-9433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-05, Vol.12 (1), p.8982-8982, Article 8982 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c |
source | Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1595 631/378/1686 631/378/1689 631/378/1934 631/378/2591 631/378/2611 631/378/2612 631/378/340 Ablation Aging Animals Brain - metabolism Brain-derived neurotrophic factor Cell signaling Dendritic spines Glutamate receptors Glutamic acid receptors (metabotropic) Humanities and Social Sciences Huntington Disease - genetics Huntington Disease - metabolism Huntington's disease Huntingtons disease Memory Disorders - genetics Memory Disorders - metabolism Mice Molecular modelling multidisciplinary Neurodegenerative diseases Neurodegenerative Diseases - metabolism Neurological diseases Neuronal Plasticity Phenotype Phenotypes Postsynaptic density proteins Science Science (multidisciplinary) Signal transduction Spine Synaptic plasticity |
title | mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mGluR5%20ablation%20leads%20to%20age-related%20synaptic%20plasticity%20impairments%20and%20does%20not%20improve%20Huntington%E2%80%99s%20disease%20phenotype&rft.jtitle=Scientific%20reports&rft.au=de%20Souza,%20Jessica%20M.&rft.date=2022-05-28&rft.volume=12&rft.issue=1&rft.spage=8982&rft.epage=8982&rft.pages=8982-8982&rft.artnum=8982&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-13029-z&rft_dat=%3Cproquest_doaj_%3E2672323283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670733795&rft_id=info:pmid/35643779&rfr_iscdi=true |