Loading…

mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype

Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ fr...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-05, Vol.12 (1), p.8982-8982, Article 8982
Main Authors: de Souza, Jessica M., Ferreira-Vieira, Talita H., Maciel, Esther M. A., Silva, Nathalia C., Lima, Izabella B. Quirino, Doria, Juliana G., Olmo, Isabella G., Ribeiro, Fabiola M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3
cites cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3
container_end_page 8982
container_issue 1
container_start_page 8982
container_title Scientific reports
container_volume 12
creator de Souza, Jessica M.
Ferreira-Vieira, Talita H.
Maciel, Esther M. A.
Silva, Nathalia C.
Lima, Izabella B. Quirino
Doria, Juliana G.
Olmo, Isabella G.
Ribeiro, Fabiola M.
description Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5 −/− , BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5 −/− /BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5 −/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5 −/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5 −/− and BACHD/mGluR5 −/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.
doi_str_mv 10.1038/s41598-022-13029-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c</doaj_id><sourcerecordid>2672323283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEotXSF-CALHHhkuKvfPiChCpoK1VCQnC2Jvbs1qvEDnZSaffEa_B6PAnepi0tB3wZa-bvnz2ef1G8ZvSUUdG-T5JVqi0p5yUTlKty_6w45lRWJRecP3-0PypOUtrSvCquJFMviyNR1VI0jTou9sN5P3-tCHQ9TC540iPYRKZAYINlxJxFS9LOwzg5Q8YeUo5u2hE3jODigH5KBLwlNmAiPkyHQgw3SC5mPzm_mYL__fNXItYlhIRkvMas2o34qnixhj7hyV1cFd8_f_p2dlFefTm_PPt4VRrRVvtS0kZ2gkJXUwacMVhzgE51HTWMKoHSGFNLaRsmO1u3aHjT0Fq2vFMWLQOxKi4Xrg2w1WN0A8SdDuD0bSLEjYaYm-pRS2hMnRdTlZSgTGdAGMMyypjMNJn1YWGNczegNbn7CP0T6NOKd9d6E260YrIVeXCr4t0dIIYfM6ZJDy4Z7HvwGOaked3kmQneiix9-490G-bo81cdVLQRolFVVvFFZWJIKeL64TGM6oNT9OIUnZ2ib52i9_nQm8dtPBy590UWiEWQcslvMP69-z_YPy5xzYE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670733795</pqid></control><display><type>article</type><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</creator><creatorcontrib>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</creatorcontrib><description>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5 −/− , BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5 −/− /BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5 −/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5 −/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5 −/− and BACHD/mGluR5 −/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-13029-z</identifier><identifier>PMID: 35643779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595 ; 631/378/1686 ; 631/378/1689 ; 631/378/1934 ; 631/378/2591 ; 631/378/2611 ; 631/378/2612 ; 631/378/340 ; Ablation ; Aging ; Animals ; Brain - metabolism ; Brain-derived neurotrophic factor ; Cell signaling ; Dendritic spines ; Glutamate receptors ; Glutamic acid receptors (metabotropic) ; Humanities and Social Sciences ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington's disease ; Huntingtons disease ; Memory Disorders - genetics ; Memory Disorders - metabolism ; Mice ; Molecular modelling ; multidisciplinary ; Neurodegenerative diseases ; Neurodegenerative Diseases - metabolism ; Neurological diseases ; Neuronal Plasticity ; Phenotype ; Phenotypes ; Postsynaptic density proteins ; Science ; Science (multidisciplinary) ; Signal transduction ; Spine ; Synaptic plasticity</subject><ispartof>Scientific reports, 2022-05, Vol.12 (1), p.8982-8982, Article 8982</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</citedby><cites>FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</cites><orcidid>0000-0001-7042-9433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670733795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670733795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35643779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Jessica M.</creatorcontrib><creatorcontrib>Ferreira-Vieira, Talita H.</creatorcontrib><creatorcontrib>Maciel, Esther M. A.</creatorcontrib><creatorcontrib>Silva, Nathalia C.</creatorcontrib><creatorcontrib>Lima, Izabella B. Quirino</creatorcontrib><creatorcontrib>Doria, Juliana G.</creatorcontrib><creatorcontrib>Olmo, Isabella G.</creatorcontrib><creatorcontrib>Ribeiro, Fabiola M.</creatorcontrib><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5 −/− , BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5 −/− /BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5 −/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5 −/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5 −/− and BACHD/mGluR5 −/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</description><subject>631/378/1595</subject><subject>631/378/1686</subject><subject>631/378/1689</subject><subject>631/378/1934</subject><subject>631/378/2591</subject><subject>631/378/2611</subject><subject>631/378/2612</subject><subject>631/378/340</subject><subject>Ablation</subject><subject>Aging</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Brain-derived neurotrophic factor</subject><subject>Cell signaling</subject><subject>Dendritic spines</subject><subject>Glutamate receptors</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Humanities and Social Sciences</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington's disease</subject><subject>Huntingtons disease</subject><subject>Memory Disorders - genetics</subject><subject>Memory Disorders - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Neurodegenerative diseases</subject><subject>Neurodegenerative Diseases - metabolism</subject><subject>Neurological diseases</subject><subject>Neuronal Plasticity</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Postsynaptic density proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Spine</subject><subject>Synaptic plasticity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEotXSF-CALHHhkuKvfPiChCpoK1VCQnC2Jvbs1qvEDnZSaffEa_B6PAnepi0tB3wZa-bvnz2ef1G8ZvSUUdG-T5JVqi0p5yUTlKty_6w45lRWJRecP3-0PypOUtrSvCquJFMviyNR1VI0jTou9sN5P3-tCHQ9TC540iPYRKZAYINlxJxFS9LOwzg5Q8YeUo5u2hE3jODigH5KBLwlNmAiPkyHQgw3SC5mPzm_mYL__fNXItYlhIRkvMas2o34qnixhj7hyV1cFd8_f_p2dlFefTm_PPt4VRrRVvtS0kZ2gkJXUwacMVhzgE51HTWMKoHSGFNLaRsmO1u3aHjT0Fq2vFMWLQOxKi4Xrg2w1WN0A8SdDuD0bSLEjYaYm-pRS2hMnRdTlZSgTGdAGMMyypjMNJn1YWGNczegNbn7CP0T6NOKd9d6E260YrIVeXCr4t0dIIYfM6ZJDy4Z7HvwGOaked3kmQneiix9-490G-bo81cdVLQRolFVVvFFZWJIKeL64TGM6oNT9OIUnZ2ib52i9_nQm8dtPBy590UWiEWQcslvMP69-z_YPy5xzYE</recordid><startdate>20220528</startdate><enddate>20220528</enddate><creator>de Souza, Jessica M.</creator><creator>Ferreira-Vieira, Talita H.</creator><creator>Maciel, Esther M. A.</creator><creator>Silva, Nathalia C.</creator><creator>Lima, Izabella B. Quirino</creator><creator>Doria, Juliana G.</creator><creator>Olmo, Isabella G.</creator><creator>Ribeiro, Fabiola M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7042-9433</orcidid></search><sort><creationdate>20220528</creationdate><title>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</title><author>de Souza, Jessica M. ; Ferreira-Vieira, Talita H. ; Maciel, Esther M. A. ; Silva, Nathalia C. ; Lima, Izabella B. Quirino ; Doria, Juliana G. ; Olmo, Isabella G. ; Ribeiro, Fabiola M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/378/1595</topic><topic>631/378/1686</topic><topic>631/378/1689</topic><topic>631/378/1934</topic><topic>631/378/2591</topic><topic>631/378/2611</topic><topic>631/378/2612</topic><topic>631/378/340</topic><topic>Ablation</topic><topic>Aging</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Brain-derived neurotrophic factor</topic><topic>Cell signaling</topic><topic>Dendritic spines</topic><topic>Glutamate receptors</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Humanities and Social Sciences</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington's disease</topic><topic>Huntingtons disease</topic><topic>Memory Disorders - genetics</topic><topic>Memory Disorders - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Neurodegenerative diseases</topic><topic>Neurodegenerative Diseases - metabolism</topic><topic>Neurological diseases</topic><topic>Neuronal Plasticity</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Postsynaptic density proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Spine</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Jessica M.</creatorcontrib><creatorcontrib>Ferreira-Vieira, Talita H.</creatorcontrib><creatorcontrib>Maciel, Esther M. A.</creatorcontrib><creatorcontrib>Silva, Nathalia C.</creatorcontrib><creatorcontrib>Lima, Izabella B. Quirino</creatorcontrib><creatorcontrib>Doria, Juliana G.</creatorcontrib><creatorcontrib>Olmo, Isabella G.</creatorcontrib><creatorcontrib>Ribeiro, Fabiola M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Jessica M.</au><au>Ferreira-Vieira, Talita H.</au><au>Maciel, Esther M. A.</au><au>Silva, Nathalia C.</au><au>Lima, Izabella B. Quirino</au><au>Doria, Juliana G.</au><au>Olmo, Isabella G.</au><au>Ribeiro, Fabiola M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2022-05-28</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>8982</spage><epage>8982</epage><pages>8982-8982</pages><artnum>8982</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5 −/− , BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5 −/− /BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5 −/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5 −/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5 −/− and BACHD/mGluR5 −/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35643779</pmid><doi>10.1038/s41598-022-13029-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7042-9433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-05, Vol.12 (1), p.8982-8982, Article 8982
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4a7c666619544a9cbca3cc12b9cc064c
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/378/1595
631/378/1686
631/378/1689
631/378/1934
631/378/2591
631/378/2611
631/378/2612
631/378/340
Ablation
Aging
Animals
Brain - metabolism
Brain-derived neurotrophic factor
Cell signaling
Dendritic spines
Glutamate receptors
Glutamic acid receptors (metabotropic)
Humanities and Social Sciences
Huntington Disease - genetics
Huntington Disease - metabolism
Huntington's disease
Huntingtons disease
Memory Disorders - genetics
Memory Disorders - metabolism
Mice
Molecular modelling
multidisciplinary
Neurodegenerative diseases
Neurodegenerative Diseases - metabolism
Neurological diseases
Neuronal Plasticity
Phenotype
Phenotypes
Postsynaptic density proteins
Science
Science (multidisciplinary)
Signal transduction
Spine
Synaptic plasticity
title mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mGluR5%20ablation%20leads%20to%20age-related%20synaptic%20plasticity%20impairments%20and%20does%20not%20improve%20Huntington%E2%80%99s%20disease%20phenotype&rft.jtitle=Scientific%20reports&rft.au=de%20Souza,%20Jessica%20M.&rft.date=2022-05-28&rft.volume=12&rft.issue=1&rft.spage=8982&rft.epage=8982&rft.pages=8982-8982&rft.artnum=8982&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-13029-z&rft_dat=%3Cproquest_doaj_%3E2672323283%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385z-4074b30ab601a211af2aab9bb0c1093e4ccc644d714bd68ec27706482b9ded1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670733795&rft_id=info:pmid/35643779&rfr_iscdi=true