Loading…
Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement
In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.30142-22, Article 30142 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 30142 |
container_title | Scientific reports |
container_volume | 14 |
creator | Hossain, M. Khalid Islam, Md Aminul Uddin, M. Shihab Paramasivam, Prabhu Hamid, Junainah Abd Alshgari, Razan A. Mishra, V. K. Haldhar, Rajesh |
description | In this work, CsPb.
625
Zn.
375
IBr
2
-based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn
3
P
2
, PTAA, MoS
2,
MoO
3,
MEH-PPV, GaAs, CuAlO
2
, Cu
2
Te, ZnTe, MoTe
2
, CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS
2
, ZnSe, PC
60
BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS
2
/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure, with MoS
2
proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V
OC
of 0.583 V, a J
SC
of 43.95 mA/cm
2
, an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb.
625
Zn.
375
IBr
2
-based PSCs and offers insightful information for further development and improvement. |
doi_str_mv | 10.1038/s41598-024-81797-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771</doaj_id><sourcerecordid>3140927395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</originalsourceid><addsrcrecordid>eNp9ks2OFCEUhStG40zGeQFXJG7cVMtvUayMtn-dTKIL3bghFFy6aauhhepx-hV8aumpiTouZAPhnvNxgdM0TwleEMz6F4UTofoWU972RCrZ3jxozinmoqWM0od_rc-ay1K2uA5BFSfqcXPGVEclY9158_MNlLCOyESHStgdRjOFFFHyaFk-DYuOiq9xwaRYvc60HUwBh_aQ03X5FiZAJY0mIwvjWNCPMG2QC95DhjghuzF5DWjKJpZ9yhMazRFyQT5lBN4HGyDaI4K4MdHCrlqeNI-8GQtc3s0XzZd3bz8vP7RXH9-vlq-uWsuUmlpBrXCKQtcDwxKs49BJppjxgijsag28xAYzR6kYhCWiI44Y5aBnA7aCXTSrmeuS2ep9DjuTjzqZoG83Ul5rk6dgR9DcSMcHJwZugFMgBhNWj-CiVx5LSSrr5czaH4YdOFuvkc14D3q_EsNGr9O1JqQjgspTN8_vCDl9P0CZ9C6U04uaCOlQNCMcq_pZ6iR99o90mw451reqKtYrRWnHqorOKptTKRn8724I1qfo6Dk6ukZH30ZH31QTm02liuMa8h_0f1y_AFOQxrM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138992263</pqid></control><display><type>article</type><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</creator><creatorcontrib>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</creatorcontrib><description>In this work, CsPb.
625
Zn.
375
IBr
2
-based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn
3
P
2
, PTAA, MoS
2,
MoO
3,
MEH-PPV, GaAs, CuAlO
2
, Cu
2
Te, ZnTe, MoTe
2
, CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS
2
, ZnSe, PC
60
BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS
2
/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure, with MoS
2
proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V
OC
of 0.583 V, a J
SC
of 43.95 mA/cm
2
, an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb.
625
Zn.
375
IBr
2
-based PSCs and offers insightful information for further development and improvement.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81797-x</identifier><identifier>PMID: 39627336</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766 ; CsPb.625Zn.375IBr2 light absorber ; Double perovskite solar cell ; Efficiency ; Electron transport ; Humanities and Social Sciences ; Molybdenum disulfide ; MoS2 HTL ; multidisciplinary ; SCAPS-1D ; Science ; Science (multidisciplinary) ; Solar cells ; Temperature effects ; Thermal stability ; ZnSe ETL</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30142-22, Article 30142</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3138992263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3138992263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Islam, Md Aminul</creatorcontrib><creatorcontrib>Uddin, M. Shihab</creatorcontrib><creatorcontrib>Paramasivam, Prabhu</creatorcontrib><creatorcontrib>Hamid, Junainah Abd</creatorcontrib><creatorcontrib>Alshgari, Razan A.</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>In this work, CsPb.
625
Zn.
375
IBr
2
-based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn
3
P
2
, PTAA, MoS
2,
MoO
3,
MEH-PPV, GaAs, CuAlO
2
, Cu
2
Te, ZnTe, MoTe
2
, CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS
2
, ZnSe, PC
60
BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS
2
/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure, with MoS
2
proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V
OC
of 0.583 V, a J
SC
of 43.95 mA/cm
2
, an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb.
625
Zn.
375
IBr
2
-based PSCs and offers insightful information for further development and improvement.</description><subject>639/301</subject><subject>639/766</subject><subject>CsPb.625Zn.375IBr2 light absorber</subject><subject>Double perovskite solar cell</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>MoS2 HTL</subject><subject>multidisciplinary</subject><subject>SCAPS-1D</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>ZnSe ETL</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks2OFCEUhStG40zGeQFXJG7cVMtvUayMtn-dTKIL3bghFFy6aauhhepx-hV8aumpiTouZAPhnvNxgdM0TwleEMz6F4UTofoWU972RCrZ3jxozinmoqWM0od_rc-ay1K2uA5BFSfqcXPGVEclY9158_MNlLCOyESHStgdRjOFFFHyaFk-DYuOiq9xwaRYvc60HUwBh_aQ03X5FiZAJY0mIwvjWNCPMG2QC95DhjghuzF5DWjKJpZ9yhMazRFyQT5lBN4HGyDaI4K4MdHCrlqeNI-8GQtc3s0XzZd3bz8vP7RXH9-vlq-uWsuUmlpBrXCKQtcDwxKs49BJppjxgijsag28xAYzR6kYhCWiI44Y5aBnA7aCXTSrmeuS2ep9DjuTjzqZoG83Ul5rk6dgR9DcSMcHJwZugFMgBhNWj-CiVx5LSSrr5czaH4YdOFuvkc14D3q_EsNGr9O1JqQjgspTN8_vCDl9P0CZ9C6U04uaCOlQNCMcq_pZ6iR99o90mw451reqKtYrRWnHqorOKptTKRn8724I1qfo6Dk6ukZH30ZH31QTm02liuMa8h_0f1y_AFOQxrM</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Hossain, M. Khalid</creator><creator>Islam, Md Aminul</creator><creator>Uddin, M. Shihab</creator><creator>Paramasivam, Prabhu</creator><creator>Hamid, Junainah Abd</creator><creator>Alshgari, Razan A.</creator><creator>Mishra, V. K.</creator><creator>Haldhar, Rajesh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241203</creationdate><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><author>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301</topic><topic>639/766</topic><topic>CsPb.625Zn.375IBr2 light absorber</topic><topic>Double perovskite solar cell</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>MoS2 HTL</topic><topic>multidisciplinary</topic><topic>SCAPS-1D</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>ZnSe ETL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Islam, Md Aminul</creatorcontrib><creatorcontrib>Uddin, M. Shihab</creatorcontrib><creatorcontrib>Paramasivam, Prabhu</creatorcontrib><creatorcontrib>Hamid, Junainah Abd</creatorcontrib><creatorcontrib>Alshgari, Razan A.</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, M. Khalid</au><au>Islam, Md Aminul</au><au>Uddin, M. Shihab</au><au>Paramasivam, Prabhu</au><au>Hamid, Junainah Abd</au><au>Alshgari, Razan A.</au><au>Mishra, V. K.</au><au>Haldhar, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2024-12-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30142</spage><epage>22</epage><pages>30142-22</pages><artnum>30142</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this work, CsPb.
625
Zn.
375
IBr
2
-based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn
3
P
2
, PTAA, MoS
2,
MoO
3,
MEH-PPV, GaAs, CuAlO
2
, Cu
2
Te, ZnTe, MoTe
2
, CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS
2
, ZnSe, PC
60
BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS
2
/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure, with MoS
2
proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V
OC
of 0.583 V, a J
SC
of 43.95 mA/cm
2
, an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb.
625
Zn.
375
IBr
2
/MoS
2
/Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb.
625
Zn.
375
IBr
2
-based PSCs and offers insightful information for further development and improvement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39627336</pmid><doi>10.1038/s41598-024-81797-x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.30142-22, Article 30142 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771 |
source | Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301 639/766 CsPb.625Zn.375IBr2 light absorber Double perovskite solar cell Efficiency Electron transport Humanities and Social Sciences Molybdenum disulfide MoS2 HTL multidisciplinary SCAPS-1D Science Science (multidisciplinary) Solar cells Temperature effects Thermal stability ZnSe ETL |
title | Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20simulation%20of%20CsPb.625Zn.375IBr2-based%20perovskite%20solar%20cells%20with%20different%20charge%20transport%20layers%20for%20efficiency%20enhancement&rft.jtitle=Scientific%20reports&rft.au=Hossain,%20M.%20Khalid&rft.date=2024-12-03&rft.volume=14&rft.issue=1&rft.spage=30142&rft.epage=22&rft.pages=30142-22&rft.artnum=30142&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81797-x&rft_dat=%3Cproquest_doaj_%3E3140927395%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3138992263&rft_id=info:pmid/39627336&rfr_iscdi=true |