Loading…

Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement

In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-12, Vol.14 (1), p.30142-22, Article 30142
Main Authors: Hossain, M. Khalid, Islam, Md Aminul, Uddin, M. Shihab, Paramasivam, Prabhu, Hamid, Junainah Abd, Alshgari, Razan A., Mishra, V. K., Haldhar, Rajesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53
container_end_page 22
container_issue 1
container_start_page 30142
container_title Scientific reports
container_volume 14
creator Hossain, M. Khalid
Islam, Md Aminul
Uddin, M. Shihab
Paramasivam, Prabhu
Hamid, Junainah Abd
Alshgari, Razan A.
Mishra, V. K.
Haldhar, Rajesh
description In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu 2 Te, ZnTe, MoTe 2 , CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS 2 , ZnSe, PC 60 BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS 2 /CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure, with MoS 2 proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V OC of 0.583 V, a J SC of 43.95 mA/cm 2 , an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb. 625 Zn. 375 IBr 2 -based PSCs and offers insightful information for further development and improvement.
doi_str_mv 10.1038/s41598-024-81797-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771</doaj_id><sourcerecordid>3140927395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</originalsourceid><addsrcrecordid>eNp9ks2OFCEUhStG40zGeQFXJG7cVMtvUayMtn-dTKIL3bghFFy6aauhhepx-hV8aumpiTouZAPhnvNxgdM0TwleEMz6F4UTofoWU972RCrZ3jxozinmoqWM0od_rc-ay1K2uA5BFSfqcXPGVEclY9158_MNlLCOyESHStgdRjOFFFHyaFk-DYuOiq9xwaRYvc60HUwBh_aQ03X5FiZAJY0mIwvjWNCPMG2QC95DhjghuzF5DWjKJpZ9yhMazRFyQT5lBN4HGyDaI4K4MdHCrlqeNI-8GQtc3s0XzZd3bz8vP7RXH9-vlq-uWsuUmlpBrXCKQtcDwxKs49BJppjxgijsag28xAYzR6kYhCWiI44Y5aBnA7aCXTSrmeuS2ep9DjuTjzqZoG83Ul5rk6dgR9DcSMcHJwZugFMgBhNWj-CiVx5LSSrr5czaH4YdOFuvkc14D3q_EsNGr9O1JqQjgspTN8_vCDl9P0CZ9C6U04uaCOlQNCMcq_pZ6iR99o90mw451reqKtYrRWnHqorOKptTKRn8724I1qfo6Dk6ukZH30ZH31QTm02liuMa8h_0f1y_AFOQxrM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138992263</pqid></control><display><type>article</type><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</creator><creatorcontrib>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</creatorcontrib><description>In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu 2 Te, ZnTe, MoTe 2 , CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS 2 , ZnSe, PC 60 BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS 2 /CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure, with MoS 2 proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V OC of 0.583 V, a J SC of 43.95 mA/cm 2 , an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb. 625 Zn. 375 IBr 2 -based PSCs and offers insightful information for further development and improvement.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81797-x</identifier><identifier>PMID: 39627336</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766 ; CsPb.625Zn.375IBr2 light absorber ; Double perovskite solar cell ; Efficiency ; Electron transport ; Humanities and Social Sciences ; Molybdenum disulfide ; MoS2 HTL ; multidisciplinary ; SCAPS-1D ; Science ; Science (multidisciplinary) ; Solar cells ; Temperature effects ; Thermal stability ; ZnSe ETL</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30142-22, Article 30142</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3138992263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3138992263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Islam, Md Aminul</creatorcontrib><creatorcontrib>Uddin, M. Shihab</creatorcontrib><creatorcontrib>Paramasivam, Prabhu</creatorcontrib><creatorcontrib>Hamid, Junainah Abd</creatorcontrib><creatorcontrib>Alshgari, Razan A.</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu 2 Te, ZnTe, MoTe 2 , CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS 2 , ZnSe, PC 60 BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS 2 /CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure, with MoS 2 proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V OC of 0.583 V, a J SC of 43.95 mA/cm 2 , an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb. 625 Zn. 375 IBr 2 -based PSCs and offers insightful information for further development and improvement.</description><subject>639/301</subject><subject>639/766</subject><subject>CsPb.625Zn.375IBr2 light absorber</subject><subject>Double perovskite solar cell</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>MoS2 HTL</subject><subject>multidisciplinary</subject><subject>SCAPS-1D</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>ZnSe ETL</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks2OFCEUhStG40zGeQFXJG7cVMtvUayMtn-dTKIL3bghFFy6aauhhepx-hV8aumpiTouZAPhnvNxgdM0TwleEMz6F4UTofoWU972RCrZ3jxozinmoqWM0od_rc-ay1K2uA5BFSfqcXPGVEclY9158_MNlLCOyESHStgdRjOFFFHyaFk-DYuOiq9xwaRYvc60HUwBh_aQ03X5FiZAJY0mIwvjWNCPMG2QC95DhjghuzF5DWjKJpZ9yhMazRFyQT5lBN4HGyDaI4K4MdHCrlqeNI-8GQtc3s0XzZd3bz8vP7RXH9-vlq-uWsuUmlpBrXCKQtcDwxKs49BJppjxgijsag28xAYzR6kYhCWiI44Y5aBnA7aCXTSrmeuS2ep9DjuTjzqZoG83Ul5rk6dgR9DcSMcHJwZugFMgBhNWj-CiVx5LSSrr5czaH4YdOFuvkc14D3q_EsNGr9O1JqQjgspTN8_vCDl9P0CZ9C6U04uaCOlQNCMcq_pZ6iR99o90mw451reqKtYrRWnHqorOKptTKRn8724I1qfo6Dk6ukZH30ZH31QTm02liuMa8h_0f1y_AFOQxrM</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Hossain, M. Khalid</creator><creator>Islam, Md Aminul</creator><creator>Uddin, M. Shihab</creator><creator>Paramasivam, Prabhu</creator><creator>Hamid, Junainah Abd</creator><creator>Alshgari, Razan A.</creator><creator>Mishra, V. K.</creator><creator>Haldhar, Rajesh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241203</creationdate><title>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</title><author>Hossain, M. Khalid ; Islam, Md Aminul ; Uddin, M. Shihab ; Paramasivam, Prabhu ; Hamid, Junainah Abd ; Alshgari, Razan A. ; Mishra, V. K. ; Haldhar, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301</topic><topic>639/766</topic><topic>CsPb.625Zn.375IBr2 light absorber</topic><topic>Double perovskite solar cell</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>MoS2 HTL</topic><topic>multidisciplinary</topic><topic>SCAPS-1D</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>ZnSe ETL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, M. Khalid</creatorcontrib><creatorcontrib>Islam, Md Aminul</creatorcontrib><creatorcontrib>Uddin, M. Shihab</creatorcontrib><creatorcontrib>Paramasivam, Prabhu</creatorcontrib><creatorcontrib>Hamid, Junainah Abd</creatorcontrib><creatorcontrib>Alshgari, Razan A.</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><creatorcontrib>Haldhar, Rajesh</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, M. Khalid</au><au>Islam, Md Aminul</au><au>Uddin, M. Shihab</au><au>Paramasivam, Prabhu</au><au>Hamid, Junainah Abd</au><au>Alshgari, Razan A.</au><au>Mishra, V. K.</au><au>Haldhar, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2024-12-03</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30142</spage><epage>22</epage><pages>30142-22</pages><artnum>30142</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this work, CsPb. 625 Zn. 375 IBr 2 -based perovskite solar cells (PSCs) are numerically simulated and optimized under ideal lighting conditions using the SCAPS-1D simulator. We investigate how various hole transport layers (HTL) including Zn 3 P 2 , PTAA, MoS 2, MoO 3, MEH-PPV, GaAs, CuAlO 2 , Cu 2 Te, ZnTe, MoTe 2 , CMTS, CNTS, CZTS, CZTSe and electron transport layers (ETL) such as CdS, SnS 2 , ZnSe, PC 60 BM interact with the devices’ functionality. Following HTL material optimization, a maximum power conversion efficiency (PCE) of 16.59% was observed for the FTO/SnS 2 /CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure, with MoS 2 proving to be a more economical option. The remainder of the investigation is done following the HTL optimization. We study how the performance of the PSC is affected by varying the materials of the ETL and to improve the PCE of the device, we finally optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL. In the end, the optimized arrangement produced a V OC of 0.583 V, a J SC of 43.95 mA/cm 2 , an FF of 82.17%, and a PCE of 21.05% for the FTO/ZnSe/CsPb. 625 Zn. 375 IBr 2 /MoS 2 /Au structure. We also examine the effects of temperature, shunt resistance, series resistance, generation rate, recombination rate, current-voltage (JV) curve, and quantum efficiency (QE) properties to learn more about the performance of the optimized device. At 300 K, the optimized device provides the highest thermal stability. Our research shows the promise of CsPb. 625 Zn. 375 IBr 2 -based PSCs and offers insightful information for further development and improvement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39627336</pmid><doi>10.1038/s41598-024-81797-x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-12, Vol.14 (1), p.30142-22, Article 30142
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4a7d4bd5b4ae42e1a0130d54589f0771
source Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301
639/766
CsPb.625Zn.375IBr2 light absorber
Double perovskite solar cell
Efficiency
Electron transport
Humanities and Social Sciences
Molybdenum disulfide
MoS2 HTL
multidisciplinary
SCAPS-1D
Science
Science (multidisciplinary)
Solar cells
Temperature effects
Thermal stability
ZnSe ETL
title Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20simulation%20of%20CsPb.625Zn.375IBr2-based%20perovskite%20solar%20cells%20with%20different%20charge%20transport%20layers%20for%20efficiency%20enhancement&rft.jtitle=Scientific%20reports&rft.au=Hossain,%20M.%20Khalid&rft.date=2024-12-03&rft.volume=14&rft.issue=1&rft.spage=30142&rft.epage=22&rft.pages=30142-22&rft.artnum=30142&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81797-x&rft_dat=%3Cproquest_doaj_%3E3140927395%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-52c5d92e68e307ecd4e67393af5190d5d9ef70a03d225b5c1561d1a9de83b0c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3138992263&rft_id=info:pmid/39627336&rfr_iscdi=true