Loading…
Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds
It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F,...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2017-10, Vol.22 (10), p.1786 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3 |
container_end_page | |
container_issue | 10 |
container_start_page | 1786 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 22 |
creator | Alkorta, Ibon Legon, Anthony C |
description | It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol
here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy. |
doi_str_mv | 10.3390/molecules22101786 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4a9739123d134bc2b8a2aaad66209e09</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4a9739123d134bc2b8a2aaad66209e09</doaj_id><sourcerecordid>1955601345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3</originalsourceid><addsrcrecordid>eNptks1uEzEQx1cIRD_gAbggS1w4EPDH2okvSEkaSKQIOJTzymtPEkdeO9i7gT5DH4Z36pPgNGmbAhfbM_Of34xHUxSvCH7PmMQfmuBAdw4SpQST_kA8KU5JSXGP4VI-PXqfFGcprTGmpCT8eXFCJRacl-K0uPnSaQdhs7LOattaSCgs0Bx-2oRGKmVzhJQ3aJIrtfH_uqG2Jp_oAlqIjfVg0CKGBrUrQBc2paCtam3waOIhLg-p49BsHPzaFbi5_j1EM78Nbmv9Ek2vTAxL8GgUvEnv0CW0Edyd9c1b3R6Hxyvl9IPjttupcg-eF8WzhXIJXh7u8-L7p8nleNqbf_08Gw_nPV1K1vbIgGOQC8yxrEFQKIXgTCjIg65lTTlIQ5Rg_T7TpKZSmloLDQNKoVb5rdh5MdtzTVDrahNto-JVFZStbh0hLisVW5vHXZVK9pkklBnCylrTeqCoUsoIQbEELDPr45616eoGjAbfRuUeQR9HvF1Vy7CtBOGkj8sMeHsAxPCjg9RWjU0anFMeQpcqIjkXOFfnWfrmL-k6dNHnUWWV4EIyVu6AZK_SMaQUYXHfDMHVbhurf7Yx57w-_sV9xt36sT_r8eIb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965693344</pqid></control><display><type>article</type><title>Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Alkorta, Ibon ; Legon, Anthony C</creator><creatorcontrib>Alkorta, Ibon ; Legon, Anthony C</creatorcontrib><description>It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol
here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules22101786</identifier><identifier>PMID: 29065546</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>ab initio calculations ; Acids ; binary complexes ; Carbon dioxide ; Chalcogen bonds ; Chalcogens - chemistry ; Chemical bonds ; dissociation energies ; electrophilicity ; Energy of dissociation ; Free energy ; geometry ; Halogens - chemistry ; Heat of formation ; Hydrogen - chemistry ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen sulfide ; Lewis Acids - chemistry ; Lewis Bases - chemistry ; Models, Molecular ; Nitrous oxide ; noncovalent bonds ; nucleophilicity ; Quantum Theory ; Selenium dioxide ; Sulfur dioxide ; Thermodynamics</subject><ispartof>Molecules (Basel, Switzerland), 2017-10, Vol.22 (10), p.1786</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3</citedby><cites>FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3</cites><orcidid>0000-0001-6876-6211 ; 0000-0003-3468-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1965693344/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965693344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29065546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alkorta, Ibon</creatorcontrib><creatorcontrib>Legon, Anthony C</creatorcontrib><title>Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol
here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.</description><subject>ab initio calculations</subject><subject>Acids</subject><subject>binary complexes</subject><subject>Carbon dioxide</subject><subject>Chalcogen bonds</subject><subject>Chalcogens - chemistry</subject><subject>Chemical bonds</subject><subject>dissociation energies</subject><subject>electrophilicity</subject><subject>Energy of dissociation</subject><subject>Free energy</subject><subject>geometry</subject><subject>Halogens - chemistry</subject><subject>Heat of formation</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen sulfide</subject><subject>Lewis Acids - chemistry</subject><subject>Lewis Bases - chemistry</subject><subject>Models, Molecular</subject><subject>Nitrous oxide</subject><subject>noncovalent bonds</subject><subject>nucleophilicity</subject><subject>Quantum Theory</subject><subject>Selenium dioxide</subject><subject>Sulfur dioxide</subject><subject>Thermodynamics</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1uEzEQx1cIRD_gAbggS1w4EPDH2okvSEkaSKQIOJTzymtPEkdeO9i7gT5DH4Z36pPgNGmbAhfbM_Of34xHUxSvCH7PmMQfmuBAdw4SpQST_kA8KU5JSXGP4VI-PXqfFGcprTGmpCT8eXFCJRacl-K0uPnSaQdhs7LOattaSCgs0Bx-2oRGKmVzhJQ3aJIrtfH_uqG2Jp_oAlqIjfVg0CKGBrUrQBc2paCtam3waOIhLg-p49BsHPzaFbi5_j1EM78Nbmv9Ek2vTAxL8GgUvEnv0CW0Edyd9c1b3R6Hxyvl9IPjttupcg-eF8WzhXIJXh7u8-L7p8nleNqbf_08Gw_nPV1K1vbIgGOQC8yxrEFQKIXgTCjIg65lTTlIQ5Rg_T7TpKZSmloLDQNKoVb5rdh5MdtzTVDrahNto-JVFZStbh0hLisVW5vHXZVK9pkklBnCylrTeqCoUsoIQbEELDPr45616eoGjAbfRuUeQR9HvF1Vy7CtBOGkj8sMeHsAxPCjg9RWjU0anFMeQpcqIjkXOFfnWfrmL-k6dNHnUWWV4EIyVu6AZK_SMaQUYXHfDMHVbhurf7Yx57w-_sV9xt36sT_r8eIb</recordid><startdate>20171023</startdate><enddate>20171023</enddate><creator>Alkorta, Ibon</creator><creator>Legon, Anthony C</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6876-6211</orcidid><orcidid>https://orcid.org/0000-0003-3468-9865</orcidid></search><sort><creationdate>20171023</creationdate><title>Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds</title><author>Alkorta, Ibon ; Legon, Anthony C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ab initio calculations</topic><topic>Acids</topic><topic>binary complexes</topic><topic>Carbon dioxide</topic><topic>Chalcogen bonds</topic><topic>Chalcogens - chemistry</topic><topic>Chemical bonds</topic><topic>dissociation energies</topic><topic>electrophilicity</topic><topic>Energy of dissociation</topic><topic>Free energy</topic><topic>geometry</topic><topic>Halogens - chemistry</topic><topic>Heat of formation</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen sulfide</topic><topic>Lewis Acids - chemistry</topic><topic>Lewis Bases - chemistry</topic><topic>Models, Molecular</topic><topic>Nitrous oxide</topic><topic>noncovalent bonds</topic><topic>nucleophilicity</topic><topic>Quantum Theory</topic><topic>Selenium dioxide</topic><topic>Sulfur dioxide</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alkorta, Ibon</creatorcontrib><creatorcontrib>Legon, Anthony C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkorta, Ibon</au><au>Legon, Anthony C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2017-10-23</date><risdate>2017</risdate><volume>22</volume><issue>10</issue><spage>1786</spage><pages>1786-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol
here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29065546</pmid><doi>10.3390/molecules22101786</doi><orcidid>https://orcid.org/0000-0001-6876-6211</orcidid><orcidid>https://orcid.org/0000-0003-3468-9865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2017-10, Vol.22 (10), p.1786 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4a9739123d134bc2b8a2aaad66209e09 |
source | Publicly Available Content Database; PubMed Central |
subjects | ab initio calculations Acids binary complexes Carbon dioxide Chalcogen bonds Chalcogens - chemistry Chemical bonds dissociation energies electrophilicity Energy of dissociation Free energy geometry Halogens - chemistry Heat of formation Hydrogen - chemistry Hydrogen Bonding Hydrogen bonds Hydrogen sulfide Lewis Acids - chemistry Lewis Bases - chemistry Models, Molecular Nitrous oxide noncovalent bonds nucleophilicity Quantum Theory Selenium dioxide Sulfur dioxide Thermodynamics |
title | Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleophilicities%20of%20Lewis%20Bases%20B%20and%20Electrophilicities%20of%20Lewis%20Acids%20A%20Determined%20from%20the%20Dissociation%20Energies%20of%20Complexes%20B%E2%8B%AFA%20Involving%20Hydrogen%20Bonds,%20Tetrel%20Bonds,%20Pnictogen%20Bonds,%20Chalcogen%20Bonds%20and%20Halogen%20Bonds&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Alkorta,%20Ibon&rft.date=2017-10-23&rft.volume=22&rft.issue=10&rft.spage=1786&rft.pages=1786-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules22101786&rft_dat=%3Cproquest_doaj_%3E1955601345%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-1850e9f0509be62e466536ae390b9b25e9d1a63773c1b299dbc6ce822ebadbca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965693344&rft_id=info:pmid/29065546&rfr_iscdi=true |