Loading…

A Biochemical Corrosion Monitoring Sensor with a Silver/Carbon Comb Structure for the Detection of Living Escherichia coli

For the detection and monitoring of live bacteria, we propose a biochemical corrosion monitoring (BCM) sensor that measures galvanic current by using a Ag/C sensor comprising silver and carbon comb electrodes. The deposition of an Escherichia coli suspension containing an LB liquid medium on the Ag/...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2023-11, Vol.8 (46), p.43511-43520
Main Authors: Touge, Chiyako, Nakatsu, Michiyo, Sugimoto, Mai, Takamura, Eiichiro, Sakamoto, Hiroaki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the detection and monitoring of live bacteria, we propose a biochemical corrosion monitoring (BCM) sensor that measures galvanic current by using a Ag/C sensor comprising silver and carbon comb electrodes. The deposition of an Escherichia coli suspension containing an LB liquid medium on the Ag/C sensor increased the galvanic current. The time required for the current to reach 20 nA is defined as T20. T20 tends to decrease as the initial number of E. coli in the E. coli solution increases. A linear relationship was obtained between the logarithm of the E. coli count and T20 in a bacterial count range of 1-108 cfu/mL under culture conditions in which the growth rate of the bacteria was constant. Hence, the number of live E. coli could be determined from T20. Ag2S precipitation was observed on the surface of the Ag electrode of the Ag/C sensor, where an increase in the current was observed. This generation of galvanic current was attributed to the reaction between a small amount of free H2S metabolized by E. coli in the bacterial solution during its growth process and Ag-the sensor anode. The Ag/C sensor can detect a free H2S concentration of 0.041 μM in the E. coli solution. This novel biochemical sensor can monitor the growth behavior of living organisms without damaging them.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c03632