Loading…
Automated segmentation of the median nerve in patients with carpal tunnel syndrome
Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at th...
Saved in:
Published in: | Scientific reports 2024-07, Vol.14 (1), p.16757-9, Article 16757 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-9b26e99410a2c7640d97132f665b3463356ed0883a81a64717fb7be46da79283 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 16757 |
container_title | Scientific reports |
container_volume | 14 |
creator | Moser, Florentin Muller, Sébastien Lie, Torgrim Langø, Thomas Hoff, Mari |
description | Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 images were manually segmented. We found an average Dice score of 0.76 between manual and automated segmentation of the median nerve in its complete course, while the measurement of the cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and automated measurements. We regard this technology as a suitable device for verifying the diagnosis of CTS. |
doi_str_mv | 10.1038/s41598-024-65840-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4aa71d93938e4e569c814b511817a040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4aa71d93938e4e569c814b511817a040</doaj_id><sourcerecordid>3082861802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9b26e99410a2c7640d97132f665b3463356ed0883a81a64717fb7be46da79283</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAltiwSfH1X-wVqiqglSohoe4tJ7mZySixB9sp6tvX05TSssAbWz6fj--1T1W9B3oGlOvPSYA0uqZM1EpqQWv5qjpmVMiaccZeP1sfVacp7WgZkhkB5m11xA3lReHH1c_zJYfZZexJws2MPrs8Bk_CQPIWyYz96DzxGG-RjJ7si1qYRH6PeUs6F_duInnxHieS7nwfw4zvqjeDmxKePs4n1c23rzcXl_X1j-9XF-fXdScYy7VpmUJTCqKOdY0StDcNcDYoJVsuFOdSYU-15k6DU6KBZmibFoXqXWOY5ifV1WrbB7ez-zjOLt7Z4Eb7sBHixrqYx25CK5xroDfccI0CpTKdBtFKAA2No4IWry-r135pS8tdaTG66YXpS8WPW7sJtxaANcAMFIdPjw4x_FowZTuPqcNpch7DkiynmjMQBg7ox3_QXViiL091oJhWoCkrFFupLoaUIg5P1QC1hwTYNQG2JMA-JMDKcujD8z6ejvz57wLwFUhF8huMf-_-j-09Q7e6BA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082861802</pqid></control><display><type>article</type><title>Automated segmentation of the median nerve in patients with carpal tunnel syndrome</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Moser, Florentin ; Muller, Sébastien ; Lie, Torgrim ; Langø, Thomas ; Hoff, Mari</creator><creatorcontrib>Moser, Florentin ; Muller, Sébastien ; Lie, Torgrim ; Langø, Thomas ; Hoff, Mari</creatorcontrib><description>Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 images were manually segmented. We found an average Dice score of 0.76 between manual and automated segmentation of the median nerve in its complete course, while the measurement of the cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and automated measurements. We regard this technology as a suitable device for verifying the diagnosis of CTS.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-65840-5</identifier><identifier>PMID: 39033223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1564 ; 692/4023/1671 ; Adult ; Aged ; Algorithms ; Automation ; Carpal tunnel syndrome ; Carpal Tunnel Syndrome - diagnostic imaging ; Case-Control Studies ; Deep Learning ; Female ; Forearm ; Hospitals ; Humanities and Social Sciences ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Machine Learning ; Male ; Median nerve ; Median Nerve - diagnostic imaging ; Median Nerve - physiopathology ; Medical research ; Middle Aged ; multidisciplinary ; Overuse injuries ; Patients ; Science ; Science (multidisciplinary) ; Segmentation ; Surgery ; Ultrasonic imaging ; Ultrasonography - methods</subject><ispartof>Scientific reports, 2024-07, Vol.14 (1), p.16757-9, Article 16757</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-9b26e99410a2c7640d97132f665b3463356ed0883a81a64717fb7be46da79283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3082861802/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3082861802?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39033223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moser, Florentin</creatorcontrib><creatorcontrib>Muller, Sébastien</creatorcontrib><creatorcontrib>Lie, Torgrim</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Hoff, Mari</creatorcontrib><title>Automated segmentation of the median nerve in patients with carpal tunnel syndrome</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 images were manually segmented. We found an average Dice score of 0.76 between manual and automated segmentation of the median nerve in its complete course, while the measurement of the cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and automated measurements. We regard this technology as a suitable device for verifying the diagnosis of CTS.</description><subject>631/114/1564</subject><subject>692/4023/1671</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Carpal tunnel syndrome</subject><subject>Carpal Tunnel Syndrome - diagnostic imaging</subject><subject>Case-Control Studies</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Forearm</subject><subject>Hospitals</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Median nerve</subject><subject>Median Nerve - diagnostic imaging</subject><subject>Median Nerve - physiopathology</subject><subject>Medical research</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Overuse injuries</subject><subject>Patients</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Surgery</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAltiwSfH1X-wVqiqglSohoe4tJ7mZySixB9sp6tvX05TSssAbWz6fj--1T1W9B3oGlOvPSYA0uqZM1EpqQWv5qjpmVMiaccZeP1sfVacp7WgZkhkB5m11xA3lReHH1c_zJYfZZexJws2MPrs8Bk_CQPIWyYz96DzxGG-RjJ7si1qYRH6PeUs6F_duInnxHieS7nwfw4zvqjeDmxKePs4n1c23rzcXl_X1j-9XF-fXdScYy7VpmUJTCqKOdY0StDcNcDYoJVsuFOdSYU-15k6DU6KBZmibFoXqXWOY5ifV1WrbB7ez-zjOLt7Z4Eb7sBHixrqYx25CK5xroDfccI0CpTKdBtFKAA2No4IWry-r135pS8tdaTG66YXpS8WPW7sJtxaANcAMFIdPjw4x_FowZTuPqcNpch7DkiynmjMQBg7ox3_QXViiL091oJhWoCkrFFupLoaUIg5P1QC1hwTYNQG2JMA-JMDKcujD8z6ejvz57wLwFUhF8huMf-_-j-09Q7e6BA</recordid><startdate>20240720</startdate><enddate>20240720</enddate><creator>Moser, Florentin</creator><creator>Muller, Sébastien</creator><creator>Lie, Torgrim</creator><creator>Langø, Thomas</creator><creator>Hoff, Mari</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240720</creationdate><title>Automated segmentation of the median nerve in patients with carpal tunnel syndrome</title><author>Moser, Florentin ; Muller, Sébastien ; Lie, Torgrim ; Langø, Thomas ; Hoff, Mari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9b26e99410a2c7640d97132f665b3463356ed0883a81a64717fb7be46da79283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114/1564</topic><topic>692/4023/1671</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Carpal tunnel syndrome</topic><topic>Carpal Tunnel Syndrome - diagnostic imaging</topic><topic>Case-Control Studies</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Forearm</topic><topic>Hospitals</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Median nerve</topic><topic>Median Nerve - diagnostic imaging</topic><topic>Median Nerve - physiopathology</topic><topic>Medical research</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Overuse injuries</topic><topic>Patients</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Surgery</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Florentin</creatorcontrib><creatorcontrib>Muller, Sébastien</creatorcontrib><creatorcontrib>Lie, Torgrim</creatorcontrib><creatorcontrib>Langø, Thomas</creatorcontrib><creatorcontrib>Hoff, Mari</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moser, Florentin</au><au>Muller, Sébastien</au><au>Lie, Torgrim</au><au>Langø, Thomas</au><au>Hoff, Mari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation of the median nerve in patients with carpal tunnel syndrome</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-07-20</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>16757</spage><epage>9</epage><pages>16757-9</pages><artnum>16757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 images were manually segmented. We found an average Dice score of 0.76 between manual and automated segmentation of the median nerve in its complete course, while the measurement of the cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and automated measurements. We regard this technology as a suitable device for verifying the diagnosis of CTS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39033223</pmid><doi>10.1038/s41598-024-65840-5</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-07, Vol.14 (1), p.16757-9, Article 16757 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4aa71d93938e4e569c814b511817a040 |
source | PubMed (Medline); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/1564 692/4023/1671 Adult Aged Algorithms Automation Carpal tunnel syndrome Carpal Tunnel Syndrome - diagnostic imaging Case-Control Studies Deep Learning Female Forearm Hospitals Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Machine Learning Male Median nerve Median Nerve - diagnostic imaging Median Nerve - physiopathology Medical research Middle Aged multidisciplinary Overuse injuries Patients Science Science (multidisciplinary) Segmentation Surgery Ultrasonic imaging Ultrasonography - methods |
title | Automated segmentation of the median nerve in patients with carpal tunnel syndrome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20of%20the%20median%20nerve%20in%20patients%20with%20carpal%20tunnel%20syndrome&rft.jtitle=Scientific%20reports&rft.au=Moser,%20Florentin&rft.date=2024-07-20&rft.volume=14&rft.issue=1&rft.spage=16757&rft.epage=9&rft.pages=16757-9&rft.artnum=16757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-65840-5&rft_dat=%3Cproquest_doaj_%3E3082861802%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9b26e99410a2c7640d97132f665b3463356ed0883a81a64717fb7be46da79283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082861802&rft_id=info:pmid/39033223&rfr_iscdi=true |