Loading…
Derivative Technology of DNA Barcoding (Nucleotide Signature and SNP Double Peak Methods) Detects Adulterants and Substitution in Chinese Patent Medicines
Lonicerae japonicae Flos has been used to produce hundred kinds of Chinese patent medicines (CPMs) in China. Economically motivated adulterants have been documented, leading to market instability and a decline in consumer confidence. ITS2 has been used to identify raw medicinal materials, but it’s n...
Saved in:
Published in: | Scientific reports 2017-07, Vol.7 (1), p.5858-11, Article 5858 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lonicerae japonicae Flos has been used to produce hundred kinds of Chinese patent medicines (CPMs) in China. Economically motivated adulterants have been documented, leading to market instability and a decline in consumer confidence. ITS2 has been used to identify raw medicinal materials, but it’s not suitable for the identification of botanical extracts and complex CPMs. Therefore, a short barcode for the identification of processed CPMs would be profitable. A 34 bp nucleotide signature (5′ CTAGCGGTGGTCGTACGATAGCCAATGCATGAGT 3′) was developed derived from ITS2 region of Eucommiae Folium based on unique motifs. Mixtures of powdered Lonicerae japonicae Flos and Lonicerae Flos resulted in double peaks at the expected SNP (Single Nucleotide Polymorphisms) positions, of which the height of the peaks were roughly indicative of the species’ ratio in the mixed powder. Subsequently we tested 20 extracts and 47 CPMs labelled as containing some species of
Lonicera
. The results revealed only 17% of the extracts and 22% of the CPMs were authentic, others exist substitution or adulterant; 7% were shown to contain both of two adulterants Eucommiae Folium and Lonicerae Flos. The methods developed in this study will widely broaden the application of DNA barcode in quality assurance of natural health products. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-05892-y |