Loading…

Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses

This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two...

Full description

Saved in:
Bibliographic Details
Published in:Clean technologies 2022-12, Vol.4 (4), p.1152-1161
Main Authors: Dias, João M. S., Costa, Vítor A. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363
cites cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363
container_end_page 1161
container_issue 4
container_start_page 1152
container_title Clean technologies
container_volume 4
creator Dias, João M. S.
Costa, Vítor A. F.
description This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.
doi_str_mv 10.3390/cleantechnol4040070
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744402909</galeid><doaj_id>oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5</doaj_id><sourcerecordid>A744402909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</originalsourceid><addsrcrecordid>eNptUU1rGzEQFSWFBie_oJeFXON0Vh8r6WjsfEFCe2jPYqIduTJryZE2B__7qHUpPZQ5zDC8ebx5j7HPPdwIYeGLnwjTTP5nypMECaDhAzvnSvdLo60--2f-xC5r3QEA11aCledssxprLoc55tStc56odBuqcZuuu80x4T767jmPNMW0ve4wjd03KiGXPSZP3SrhdKxUL9jHgFOlyz99wX7c3X5fPyyfvt4_rldPSy-VmJe-t5IPUqIMXvej1wTGKmNGobgWoCwHK5oqy8n0gzHoBUjrtRm8QikGsWCPJ94x484dStxjObqM0f1e5LJ1WObYDHESX8YXMpyLgUtlNHoAg8EGyb2ioBrX1YnrUPLrG9XZ7fJbaQ9Vx7UaBjMo1TfUzQm1xUYaU8hzQd9qpGZNThRi26-0lBK4bfIXTJwOfMm1Fgp_ZfbgfsXl_hOXeAfk1YhB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756686551</pqid></control><display><type>article</type><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><source>Publicly Available Content (ProQuest)</source><creator>Dias, João M. S. ; Costa, Vítor A. F.</creator><creatorcontrib>Dias, João M. S. ; Costa, Vítor A. F.</creatorcontrib><description>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</description><identifier>ISSN: 2571-8797</identifier><identifier>EISSN: 2571-8797</identifier><identifier>DOI: 10.3390/cleantechnol4040070</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorbents ; Adsorption ; adsorption cooler ; air cooling ; Alternative energy sources ; Analysis ; Cooling systems ; Design ; Dynamic models ; Energy industry ; Evaporators ; Force and energy ; Heat ; Heating, ventilation, and air conditioning industry ; Hot water heating ; Ordinary differential equations ; Partial differential equations ; Refrigeration ; Residential areas ; Residential buildings ; Silica ; Silica gel ; solar heat surplus ; Solar heating ; Thermal energy ; thermally driven cooling ; Working conditions</subject><ispartof>Clean technologies, 2022-12, Vol.4 (4), p.1152-1161</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</citedby><cites>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</cites><orcidid>0000-0003-4975-6055 ; 0000-0002-7071-2439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756686551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756686551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dias, João M. S.</creatorcontrib><creatorcontrib>Costa, Vítor A. F.</creatorcontrib><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><title>Clean technologies</title><description>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</description><subject>Adsorbates</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>adsorption cooler</subject><subject>air cooling</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Cooling systems</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Energy industry</subject><subject>Evaporators</subject><subject>Force and energy</subject><subject>Heat</subject><subject>Heating, ventilation, and air conditioning industry</subject><subject>Hot water heating</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Refrigeration</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Silica</subject><subject>Silica gel</subject><subject>solar heat surplus</subject><subject>Solar heating</subject><subject>Thermal energy</subject><subject>thermally driven cooling</subject><subject>Working conditions</subject><issn>2571-8797</issn><issn>2571-8797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQFSWFBie_oJeFXON0Vh8r6WjsfEFCe2jPYqIduTJryZE2B__7qHUpPZQ5zDC8ebx5j7HPPdwIYeGLnwjTTP5nypMECaDhAzvnSvdLo60--2f-xC5r3QEA11aCledssxprLoc55tStc56odBuqcZuuu80x4T767jmPNMW0ve4wjd03KiGXPSZP3SrhdKxUL9jHgFOlyz99wX7c3X5fPyyfvt4_rldPSy-VmJe-t5IPUqIMXvej1wTGKmNGobgWoCwHK5oqy8n0gzHoBUjrtRm8QikGsWCPJ94x484dStxjObqM0f1e5LJ1WObYDHESX8YXMpyLgUtlNHoAg8EGyb2ioBrX1YnrUPLrG9XZ7fJbaQ9Vx7UaBjMo1TfUzQm1xUYaU8hzQd9qpGZNThRi26-0lBK4bfIXTJwOfMm1Fgp_ZfbgfsXl_hOXeAfk1YhB</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dias, João M. S.</creator><creator>Costa, Vítor A. F.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4975-6055</orcidid><orcidid>https://orcid.org/0000-0002-7071-2439</orcidid></search><sort><creationdate>20221201</creationdate><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><author>Dias, João M. S. ; Costa, Vítor A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorbates</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>adsorption cooler</topic><topic>air cooling</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Cooling systems</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Energy industry</topic><topic>Evaporators</topic><topic>Force and energy</topic><topic>Heat</topic><topic>Heating, ventilation, and air conditioning industry</topic><topic>Hot water heating</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Refrigeration</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Silica</topic><topic>Silica gel</topic><topic>solar heat surplus</topic><topic>Solar heating</topic><topic>Thermal energy</topic><topic>thermally driven cooling</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, João M. S.</creatorcontrib><creatorcontrib>Costa, Vítor A. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Clean technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, João M. S.</au><au>Costa, Vítor A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</atitle><jtitle>Clean technologies</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>4</volume><issue>4</issue><spage>1152</spage><epage>1161</epage><pages>1152-1161</pages><issn>2571-8797</issn><eissn>2571-8797</eissn><abstract>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cleantechnol4040070</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4975-6055</orcidid><orcidid>https://orcid.org/0000-0002-7071-2439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2571-8797
ispartof Clean technologies, 2022-12, Vol.4 (4), p.1152-1161
issn 2571-8797
2571-8797
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5
source Publicly Available Content (ProQuest)
subjects Adsorbates
Adsorbents
Adsorption
adsorption cooler
air cooling
Alternative energy sources
Analysis
Cooling systems
Design
Dynamic models
Energy industry
Evaporators
Force and energy
Heat
Heating, ventilation, and air conditioning industry
Hot water heating
Ordinary differential equations
Partial differential equations
Refrigeration
Residential areas
Residential buildings
Silica
Silica gel
solar heat surplus
Solar heating
Thermal energy
thermally driven cooling
Working conditions
title Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20Cooler%20Design,%20Dynamic%20Modeling,%20and%20Performance%20Analyses&rft.jtitle=Clean%20technologies&rft.au=Dias,%20Jo%C3%A3o%20M.%20S.&rft.date=2022-12-01&rft.volume=4&rft.issue=4&rft.spage=1152&rft.epage=1161&rft.pages=1152-1161&rft.issn=2571-8797&rft.eissn=2571-8797&rft_id=info:doi/10.3390/cleantechnol4040070&rft_dat=%3Cgale_doaj_%3EA744402909%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756686551&rft_id=info:pmid/&rft_galeid=A744402909&rfr_iscdi=true