Loading…
Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses
This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two...
Saved in:
Published in: | Clean technologies 2022-12, Vol.4 (4), p.1152-1161 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363 |
container_end_page | 1161 |
container_issue | 4 |
container_start_page | 1152 |
container_title | Clean technologies |
container_volume | 4 |
creator | Dias, João M. S. Costa, Vítor A. F. |
description | This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C. |
doi_str_mv | 10.3390/cleantechnol4040070 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744402909</galeid><doaj_id>oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5</doaj_id><sourcerecordid>A744402909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</originalsourceid><addsrcrecordid>eNptUU1rGzEQFSWFBie_oJeFXON0Vh8r6WjsfEFCe2jPYqIduTJryZE2B__7qHUpPZQ5zDC8ebx5j7HPPdwIYeGLnwjTTP5nypMECaDhAzvnSvdLo60--2f-xC5r3QEA11aCledssxprLoc55tStc56odBuqcZuuu80x4T767jmPNMW0ve4wjd03KiGXPSZP3SrhdKxUL9jHgFOlyz99wX7c3X5fPyyfvt4_rldPSy-VmJe-t5IPUqIMXvej1wTGKmNGobgWoCwHK5oqy8n0gzHoBUjrtRm8QikGsWCPJ94x484dStxjObqM0f1e5LJ1WObYDHESX8YXMpyLgUtlNHoAg8EGyb2ioBrX1YnrUPLrG9XZ7fJbaQ9Vx7UaBjMo1TfUzQm1xUYaU8hzQd9qpGZNThRi26-0lBK4bfIXTJwOfMm1Fgp_ZfbgfsXl_hOXeAfk1YhB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756686551</pqid></control><display><type>article</type><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><source>Publicly Available Content (ProQuest)</source><creator>Dias, João M. S. ; Costa, Vítor A. F.</creator><creatorcontrib>Dias, João M. S. ; Costa, Vítor A. F.</creatorcontrib><description>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</description><identifier>ISSN: 2571-8797</identifier><identifier>EISSN: 2571-8797</identifier><identifier>DOI: 10.3390/cleantechnol4040070</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbates ; Adsorbents ; Adsorption ; adsorption cooler ; air cooling ; Alternative energy sources ; Analysis ; Cooling systems ; Design ; Dynamic models ; Energy industry ; Evaporators ; Force and energy ; Heat ; Heating, ventilation, and air conditioning industry ; Hot water heating ; Ordinary differential equations ; Partial differential equations ; Refrigeration ; Residential areas ; Residential buildings ; Silica ; Silica gel ; solar heat surplus ; Solar heating ; Thermal energy ; thermally driven cooling ; Working conditions</subject><ispartof>Clean technologies, 2022-12, Vol.4 (4), p.1152-1161</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</citedby><cites>FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</cites><orcidid>0000-0003-4975-6055 ; 0000-0002-7071-2439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756686551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756686551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dias, João M. S.</creatorcontrib><creatorcontrib>Costa, Vítor A. F.</creatorcontrib><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><title>Clean technologies</title><description>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</description><subject>Adsorbates</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>adsorption cooler</subject><subject>air cooling</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Cooling systems</subject><subject>Design</subject><subject>Dynamic models</subject><subject>Energy industry</subject><subject>Evaporators</subject><subject>Force and energy</subject><subject>Heat</subject><subject>Heating, ventilation, and air conditioning industry</subject><subject>Hot water heating</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Refrigeration</subject><subject>Residential areas</subject><subject>Residential buildings</subject><subject>Silica</subject><subject>Silica gel</subject><subject>solar heat surplus</subject><subject>Solar heating</subject><subject>Thermal energy</subject><subject>thermally driven cooling</subject><subject>Working conditions</subject><issn>2571-8797</issn><issn>2571-8797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rGzEQFSWFBie_oJeFXON0Vh8r6WjsfEFCe2jPYqIduTJryZE2B__7qHUpPZQ5zDC8ebx5j7HPPdwIYeGLnwjTTP5nypMECaDhAzvnSvdLo60--2f-xC5r3QEA11aCledssxprLoc55tStc56odBuqcZuuu80x4T767jmPNMW0ve4wjd03KiGXPSZP3SrhdKxUL9jHgFOlyz99wX7c3X5fPyyfvt4_rldPSy-VmJe-t5IPUqIMXvej1wTGKmNGobgWoCwHK5oqy8n0gzHoBUjrtRm8QikGsWCPJ94x484dStxjObqM0f1e5LJ1WObYDHESX8YXMpyLgUtlNHoAg8EGyb2ioBrX1YnrUPLrG9XZ7fJbaQ9Vx7UaBjMo1TfUzQm1xUYaU8hzQd9qpGZNThRi26-0lBK4bfIXTJwOfMm1Fgp_ZfbgfsXl_hOXeAfk1YhB</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dias, João M. S.</creator><creator>Costa, Vítor A. F.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4975-6055</orcidid><orcidid>https://orcid.org/0000-0002-7071-2439</orcidid></search><sort><creationdate>20221201</creationdate><title>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</title><author>Dias, João M. S. ; Costa, Vítor A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorbates</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>adsorption cooler</topic><topic>air cooling</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Cooling systems</topic><topic>Design</topic><topic>Dynamic models</topic><topic>Energy industry</topic><topic>Evaporators</topic><topic>Force and energy</topic><topic>Heat</topic><topic>Heating, ventilation, and air conditioning industry</topic><topic>Hot water heating</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Refrigeration</topic><topic>Residential areas</topic><topic>Residential buildings</topic><topic>Silica</topic><topic>Silica gel</topic><topic>solar heat surplus</topic><topic>Solar heating</topic><topic>Thermal energy</topic><topic>thermally driven cooling</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias, João M. S.</creatorcontrib><creatorcontrib>Costa, Vítor A. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Clean technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias, João M. S.</au><au>Costa, Vítor A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses</atitle><jtitle>Clean technologies</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>4</volume><issue>4</issue><spage>1152</spage><epage>1161</epage><pages>1152-1161</pages><issn>2571-8797</issn><eissn>2571-8797</eissn><abstract>This paper presents an adsorption cooler (AC) driven by the surplus heat of a solar thermal domestic hot water system to provide cooling to residential buildings. A cylindrical tube adsorber using granular silica gel as adsorbent and water as adsorbate was considered. The AC was modelled using a two-dimensional distributed parameter model implemented in previous adsorption heating and cooling studies. The performance coefficients of the resultant thermally driven cooling system were obtained for a broad range of working conditions. The thermally driven AC was found to have coefficient of performance (COP) of 0.5 and a specific cooling power (SCP) of 44 W·kg−1 when considering condenser, evaporator, and regeneration temperatures of 30 °C, 15 °C, and 70 °C, respectively. Moreover, the results showed that the AC could be used for refrigeration purposes at temperatures as low as 2 °C and that it could also operate during hotter days under temperatures of 42 °C.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cleantechnol4040070</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4975-6055</orcidid><orcidid>https://orcid.org/0000-0002-7071-2439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2571-8797 |
ispartof | Clean technologies, 2022-12, Vol.4 (4), p.1152-1161 |
issn | 2571-8797 2571-8797 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4abdbe8223624587ac008af9f42c5ef5 |
source | Publicly Available Content (ProQuest) |
subjects | Adsorbates Adsorbents Adsorption adsorption cooler air cooling Alternative energy sources Analysis Cooling systems Design Dynamic models Energy industry Evaporators Force and energy Heat Heating, ventilation, and air conditioning industry Hot water heating Ordinary differential equations Partial differential equations Refrigeration Residential areas Residential buildings Silica Silica gel solar heat surplus Solar heating Thermal energy thermally driven cooling Working conditions |
title | Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20Cooler%20Design,%20Dynamic%20Modeling,%20and%20Performance%20Analyses&rft.jtitle=Clean%20technologies&rft.au=Dias,%20Jo%C3%A3o%20M.%20S.&rft.date=2022-12-01&rft.volume=4&rft.issue=4&rft.spage=1152&rft.epage=1161&rft.pages=1152-1161&rft.issn=2571-8797&rft.eissn=2571-8797&rft_id=info:doi/10.3390/cleantechnol4040070&rft_dat=%3Cgale_doaj_%3EA744402909%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-c1942644a4fc71dc7e089588d35273059209309492e81688ac3049c786c5a4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756686551&rft_id=info:pmid/&rft_galeid=A744402909&rfr_iscdi=true |