Loading…

Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification

Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has no cure or prevention available. Scientists found that dementia symptoms might emerge as early as ten years before the onset of real disease. As a result, machine learning (ML) scientists developed various te...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicines 2023-02, Vol.11 (2), p.439
Main Authors: Javeed, Ashir, Dallora, Ana Luiza, Berglund, Johan Sanmartin, Idrisoglu, Alper, Ali, Liaqat, Rauf, Hafiz Tayyab, Anderberg, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has no cure or prevention available. Scientists found that dementia symptoms might emerge as early as ten years before the onset of real disease. As a result, machine learning (ML) scientists developed various techniques for the early prediction of dementia using dementia symptoms. However, these methods have fundamental limitations, such as low accuracy and bias in machine learning (ML) models. To resolve the issue of bias in the proposed ML model, we deployed the adaptive synthetic sampling (ADASYN) technique, and to improve accuracy, we have proposed novel feature extraction techniques, namely, feature extraction battery (FEB) and optimized support vector machine (SVM) using radical basis function (rbf) for the classification of the disease. The hyperparameters of SVM are calibrated by employing the grid search approach. It is evident from the experimental results that the newly pr oposed model (FEB-SVM) improves the dementia prediction accuracy of the conventional SVM by 6%. The proposed model (FEB-SVM) obtained 98.28% accuracy on training data and a testing accuracy of 93.92%. Along with accuracy, the proposed model obtained a precision of 91.80%, recall of 86.59, F1-score of 89.12%, and Matthew's correlation coefficient (MCC) of 0.4987. Moreover, the newly proposed model (FEB-SVM) outperforms the 12 state-of-the-art ML models that the researchers have recently presented for dementia prediction.
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines11020439