Loading…

Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement

Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditio...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-07, Vol.15 (14), p.5029
Main Authors: Gumbarević, Sanjin, Milovanović, Bojan, Dalbelo Bašić, Bojana, Gaši, Mergim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353
cites cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353
container_end_page
container_issue 14
container_start_page 5029
container_title Energies (Basel)
container_volume 15
creator Gumbarević, Sanjin
Milovanović, Bojan
Dalbelo Bašić, Bojana
Gaši, Mergim
description Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.
doi_str_mv 10.3390/en15145029
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723171442</galeid><doaj_id>oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34</doaj_id><sourcerecordid>A723171442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRCVqEov_QWWuCGl2Bknjo_VQulKiziwd8txZna92tiL4yD497i7VWHmMB9672k-qupO8HsAzT9hEK2QLW_0m-paaN3Vgit4-1_-rrqd5wMvBiAA4Lo6rOI0-ODDjn1GPLEN2nSubBhZ3iN7QpvZ43H5zb5h3seRUUxsHeofPi9su8c02WO9TTbMk8_ZBocFaOcl4YQhs_V0SvHXOX9fXZE9znj7Em-q7eOX7eqp3nz_ul49bGonOc81jbotO4ykGq2bfugU9WLgckRSsutV5zQNvIdOkGgHsKTBYS-IGs4ltHBTrS-yY7QHc0p-sumPidabcyOmnbEpe3dEIy0pp5q-5aqTgvqeCzkQjIACyYEsWh8uWmWJnwvO2RzikkKZ3jSdls-H1Lqg7i-onS2iPlDMybriI07exYDkS_9BNSCUkLIphI8XgktxnhPS65iCm-dXmn-vhL84no8Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694000099</pqid></control><display><type>article</type><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</creator><creatorcontrib>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</creatorcontrib><description>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15145029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Building components ; Building envelopes ; building physics ; Construction ; Deep learning ; Emissions ; Energy balance ; Energy efficiency ; Environmental conditions ; Expected values ; Experimental methods ; Fluctuations ; Green buildings ; Heat ; Heat flux ; Heat transfer ; Long short-term memory ; machine learning ; Methods ; Sensors ; Temperature ; Temperature gradients ; Thermal properties ; thermal transmittance ; Transmission loss ; Transmittance</subject><ispartof>Energies (Basel), 2022-07, Vol.15 (14), p.5029</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</citedby><cites>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</cites><orcidid>0000-0002-6028-133X ; 0000-0003-0264-2958 ; 0000-0002-9100-4060 ; 0000-0003-4534-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694000099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694000099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Gumbarević, Sanjin</creatorcontrib><creatorcontrib>Milovanović, Bojan</creatorcontrib><creatorcontrib>Dalbelo Bašić, Bojana</creatorcontrib><creatorcontrib>Gaši, Mergim</creatorcontrib><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><title>Energies (Basel)</title><description>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</description><subject>Boundary conditions</subject><subject>Building components</subject><subject>Building envelopes</subject><subject>building physics</subject><subject>Construction</subject><subject>Deep learning</subject><subject>Emissions</subject><subject>Energy balance</subject><subject>Energy efficiency</subject><subject>Environmental conditions</subject><subject>Expected values</subject><subject>Experimental methods</subject><subject>Fluctuations</subject><subject>Green buildings</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Long short-term memory</subject><subject>machine learning</subject><subject>Methods</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermal properties</subject><subject>thermal transmittance</subject><subject>Transmission loss</subject><subject>Transmittance</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRCVqEov_QWWuCGl2Bknjo_VQulKiziwd8txZna92tiL4yD497i7VWHmMB9672k-qupO8HsAzT9hEK2QLW_0m-paaN3Vgit4-1_-rrqd5wMvBiAA4Lo6rOI0-ODDjn1GPLEN2nSubBhZ3iN7QpvZ43H5zb5h3seRUUxsHeofPi9su8c02WO9TTbMk8_ZBocFaOcl4YQhs_V0SvHXOX9fXZE9znj7Em-q7eOX7eqp3nz_ul49bGonOc81jbotO4ykGq2bfugU9WLgckRSsutV5zQNvIdOkGgHsKTBYS-IGs4ltHBTrS-yY7QHc0p-sumPidabcyOmnbEpe3dEIy0pp5q-5aqTgvqeCzkQjIACyYEsWh8uWmWJnwvO2RzikkKZ3jSdls-H1Lqg7i-onS2iPlDMybriI07exYDkS_9BNSCUkLIphI8XgktxnhPS65iCm-dXmn-vhL84no8Y</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gumbarević, Sanjin</creator><creator>Milovanović, Bojan</creator><creator>Dalbelo Bašić, Bojana</creator><creator>Gaši, Mergim</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6028-133X</orcidid><orcidid>https://orcid.org/0000-0003-0264-2958</orcidid><orcidid>https://orcid.org/0000-0002-9100-4060</orcidid><orcidid>https://orcid.org/0000-0003-4534-8441</orcidid></search><sort><creationdate>20220701</creationdate><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><author>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Building components</topic><topic>Building envelopes</topic><topic>building physics</topic><topic>Construction</topic><topic>Deep learning</topic><topic>Emissions</topic><topic>Energy balance</topic><topic>Energy efficiency</topic><topic>Environmental conditions</topic><topic>Expected values</topic><topic>Experimental methods</topic><topic>Fluctuations</topic><topic>Green buildings</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Long short-term memory</topic><topic>machine learning</topic><topic>Methods</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermal properties</topic><topic>thermal transmittance</topic><topic>Transmission loss</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gumbarević, Sanjin</creatorcontrib><creatorcontrib>Milovanović, Bojan</creatorcontrib><creatorcontrib>Dalbelo Bašić, Bojana</creatorcontrib><creatorcontrib>Gaši, Mergim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gumbarević, Sanjin</au><au>Milovanović, Bojan</au><au>Dalbelo Bašić, Bojana</au><au>Gaši, Mergim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</atitle><jtitle>Energies (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>14</issue><spage>5029</spage><pages>5029-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15145029</doi><orcidid>https://orcid.org/0000-0002-6028-133X</orcidid><orcidid>https://orcid.org/0000-0003-0264-2958</orcidid><orcidid>https://orcid.org/0000-0002-9100-4060</orcidid><orcidid>https://orcid.org/0000-0003-4534-8441</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-07, Vol.15 (14), p.5029
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boundary conditions
Building components
Building envelopes
building physics
Construction
Deep learning
Emissions
Energy balance
Energy efficiency
Environmental conditions
Expected values
Experimental methods
Fluctuations
Green buildings
Heat
Heat flux
Heat transfer
Long short-term memory
machine learning
Methods
Sensors
Temperature
Temperature gradients
Thermal properties
thermal transmittance
Transmission loss
Transmittance
title Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Deep%20Learning%20and%20the%20Heat%20Flux%20Method%20for%20In-Situ%20Thermal-Transmittance%20Measurement%20Improvement&rft.jtitle=Energies%20(Basel)&rft.au=Gumbarevi%C4%87,%20Sanjin&rft.date=2022-07-01&rft.volume=15&rft.issue=14&rft.spage=5029&rft.pages=5029-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15145029&rft_dat=%3Cgale_doaj_%3EA723171442%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694000099&rft_id=info:pmid/&rft_galeid=A723171442&rfr_iscdi=true