Loading…
Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement
Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditio...
Saved in:
Published in: | Energies (Basel) 2022-07, Vol.15 (14), p.5029 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353 |
container_end_page | |
container_issue | 14 |
container_start_page | 5029 |
container_title | Energies (Basel) |
container_volume | 15 |
creator | Gumbarević, Sanjin Milovanović, Bojan Dalbelo Bašić, Bojana Gaši, Mergim |
description | Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements. |
doi_str_mv | 10.3390/en15145029 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723171442</galeid><doaj_id>oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34</doaj_id><sourcerecordid>A723171442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRCVqEov_QWWuCGl2Bknjo_VQulKiziwd8txZna92tiL4yD497i7VWHmMB9672k-qupO8HsAzT9hEK2QLW_0m-paaN3Vgit4-1_-rrqd5wMvBiAA4Lo6rOI0-ODDjn1GPLEN2nSubBhZ3iN7QpvZ43H5zb5h3seRUUxsHeofPi9su8c02WO9TTbMk8_ZBocFaOcl4YQhs_V0SvHXOX9fXZE9znj7Em-q7eOX7eqp3nz_ul49bGonOc81jbotO4ykGq2bfugU9WLgckRSsutV5zQNvIdOkGgHsKTBYS-IGs4ltHBTrS-yY7QHc0p-sumPidabcyOmnbEpe3dEIy0pp5q-5aqTgvqeCzkQjIACyYEsWh8uWmWJnwvO2RzikkKZ3jSdls-H1Lqg7i-onS2iPlDMybriI07exYDkS_9BNSCUkLIphI8XgktxnhPS65iCm-dXmn-vhL84no8Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694000099</pqid></control><display><type>article</type><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</creator><creatorcontrib>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</creatorcontrib><description>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15145029</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Building components ; Building envelopes ; building physics ; Construction ; Deep learning ; Emissions ; Energy balance ; Energy efficiency ; Environmental conditions ; Expected values ; Experimental methods ; Fluctuations ; Green buildings ; Heat ; Heat flux ; Heat transfer ; Long short-term memory ; machine learning ; Methods ; Sensors ; Temperature ; Temperature gradients ; Thermal properties ; thermal transmittance ; Transmission loss ; Transmittance</subject><ispartof>Energies (Basel), 2022-07, Vol.15 (14), p.5029</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</citedby><cites>FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</cites><orcidid>0000-0002-6028-133X ; 0000-0003-0264-2958 ; 0000-0002-9100-4060 ; 0000-0003-4534-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694000099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694000099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Gumbarević, Sanjin</creatorcontrib><creatorcontrib>Milovanović, Bojan</creatorcontrib><creatorcontrib>Dalbelo Bašić, Bojana</creatorcontrib><creatorcontrib>Gaši, Mergim</creatorcontrib><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><title>Energies (Basel)</title><description>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</description><subject>Boundary conditions</subject><subject>Building components</subject><subject>Building envelopes</subject><subject>building physics</subject><subject>Construction</subject><subject>Deep learning</subject><subject>Emissions</subject><subject>Energy balance</subject><subject>Energy efficiency</subject><subject>Environmental conditions</subject><subject>Expected values</subject><subject>Experimental methods</subject><subject>Fluctuations</subject><subject>Green buildings</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Long short-term memory</subject><subject>machine learning</subject><subject>Methods</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thermal properties</subject><subject>thermal transmittance</subject><subject>Transmission loss</subject><subject>Transmittance</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRCVqEov_QWWuCGl2Bknjo_VQulKiziwd8txZna92tiL4yD497i7VWHmMB9672k-qupO8HsAzT9hEK2QLW_0m-paaN3Vgit4-1_-rrqd5wMvBiAA4Lo6rOI0-ODDjn1GPLEN2nSubBhZ3iN7QpvZ43H5zb5h3seRUUxsHeofPi9su8c02WO9TTbMk8_ZBocFaOcl4YQhs_V0SvHXOX9fXZE9znj7Em-q7eOX7eqp3nz_ul49bGonOc81jbotO4ykGq2bfugU9WLgckRSsutV5zQNvIdOkGgHsKTBYS-IGs4ltHBTrS-yY7QHc0p-sumPidabcyOmnbEpe3dEIy0pp5q-5aqTgvqeCzkQjIACyYEsWh8uWmWJnwvO2RzikkKZ3jSdls-H1Lqg7i-onS2iPlDMybriI07exYDkS_9BNSCUkLIphI8XgktxnhPS65iCm-dXmn-vhL84no8Y</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gumbarević, Sanjin</creator><creator>Milovanović, Bojan</creator><creator>Dalbelo Bašić, Bojana</creator><creator>Gaši, Mergim</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6028-133X</orcidid><orcidid>https://orcid.org/0000-0003-0264-2958</orcidid><orcidid>https://orcid.org/0000-0002-9100-4060</orcidid><orcidid>https://orcid.org/0000-0003-4534-8441</orcidid></search><sort><creationdate>20220701</creationdate><title>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</title><author>Gumbarević, Sanjin ; Milovanović, Bojan ; Dalbelo Bašić, Bojana ; Gaši, Mergim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Building components</topic><topic>Building envelopes</topic><topic>building physics</topic><topic>Construction</topic><topic>Deep learning</topic><topic>Emissions</topic><topic>Energy balance</topic><topic>Energy efficiency</topic><topic>Environmental conditions</topic><topic>Expected values</topic><topic>Experimental methods</topic><topic>Fluctuations</topic><topic>Green buildings</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Long short-term memory</topic><topic>machine learning</topic><topic>Methods</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thermal properties</topic><topic>thermal transmittance</topic><topic>Transmission loss</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gumbarević, Sanjin</creatorcontrib><creatorcontrib>Milovanović, Bojan</creatorcontrib><creatorcontrib>Dalbelo Bašić, Bojana</creatorcontrib><creatorcontrib>Gaši, Mergim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gumbarević, Sanjin</au><au>Milovanović, Bojan</au><au>Dalbelo Bašić, Bojana</au><au>Gaši, Mergim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement</atitle><jtitle>Energies (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>14</issue><spage>5029</spage><pages>5029-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Transmission losses through the building envelope account for a large proportion of building energy balance. One of the most important parameters for determining transmission losses is thermal transmittance. Although thermal transmittance does not take into account dynamic parameters, it is traditionally the most commonly used estimation of transmission losses due to its simplicity and efficiency. It is challenging to estimate the thermal transmittance of an existing building element because thermal properties are commonly unknown or not all the layers that make up the element can be found due to technical-drawing information loss. In such cases, experimental methods are essential, the most common of which is the heat-flux method (HFM). One of the main drawbacks of the HFM is the long measurement duration. This research presents the application of deep learning on HFM results by applying long-short term memory units on temperature difference and measured heat flux. This deep-learning regression problem predicts heat flux after the applied model is properly trained on temperature-difference input, which is backpropagated by measured heat flux. The paper shows the performance of the developed procedure on real-size walls under the simulated environmental conditions, while the possibility of practical application is shown in pilot in-situ measurements.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15145029</doi><orcidid>https://orcid.org/0000-0002-6028-133X</orcidid><orcidid>https://orcid.org/0000-0003-0264-2958</orcidid><orcidid>https://orcid.org/0000-0002-9100-4060</orcidid><orcidid>https://orcid.org/0000-0003-4534-8441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2022-07, Vol.15 (14), p.5029 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4af7c728507641f88014bf3d3e1efc34 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Boundary conditions Building components Building envelopes building physics Construction Deep learning Emissions Energy balance Energy efficiency Environmental conditions Expected values Experimental methods Fluctuations Green buildings Heat Heat flux Heat transfer Long short-term memory machine learning Methods Sensors Temperature Temperature gradients Thermal properties thermal transmittance Transmission loss Transmittance |
title | Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Deep%20Learning%20and%20the%20Heat%20Flux%20Method%20for%20In-Situ%20Thermal-Transmittance%20Measurement%20Improvement&rft.jtitle=Energies%20(Basel)&rft.au=Gumbarevi%C4%87,%20Sanjin&rft.date=2022-07-01&rft.volume=15&rft.issue=14&rft.spage=5029&rft.pages=5029-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15145029&rft_dat=%3Cgale_doaj_%3EA723171442%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fd95502df729928b67f81b04def746876c9fb08361f15b3af93ce81ff2004353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694000099&rft_id=info:pmid/&rft_galeid=A723171442&rfr_iscdi=true |