Loading…
An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables
Magnesium-based batteries represent one of the successfully emerging electrochemical energy storage chemistries, mainly due to the high theoretical volumetric capacity of metallic magnesium (i.e., 3833 mAh cm vs. 2046 mAh cm for lithium), its low reduction potential (-2.37 V vs. SHE), abundance in t...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-03, Vol.11 (3), p.810 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnesium-based batteries represent one of the successfully emerging electrochemical energy storage chemistries, mainly due to the high theoretical volumetric capacity of metallic magnesium (i.e., 3833 mAh cm
vs. 2046 mAh cm
for lithium), its low reduction potential (-2.37 V vs. SHE), abundance in the Earth's crust (10
times higher than that of lithium) and dendrite-free behaviour when used as an anode during cycling. However, Mg deposition and dissolution processes in polar organic electrolytes lead to the formation of a passivation film bearing an insulating effect towards Mg
ions. Several strategies to overcome this drawback have been recently proposed, keeping as a main goal that of reducing the formation of such passivation layers and improving the magnesium-related kinetics. This manuscript offers a literature analysis on this topic, starting with a rapid overview on magnesium batteries as a feasible strategy for storing electricity coming from renewables, and then addressing the most relevant outcomes in the field of anodic materials (i.e., metallic magnesium, bismuth-, titanium- and tin-based electrodes, biphasic alloys, nanostructured metal oxides, boron clusters, graphene-based electrodes, etc.). |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11030810 |