Loading…
Some relations between the Caputo fractional difference operators and integer-order differences
In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1
Saved in:
Published in: | Electronic journal of differential equations 2015-06, Vol.2015 (163), p.1-7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | 163 |
container_start_page | 1 |
container_title | Electronic journal of differential equations |
container_volume | 2015 |
creator | Baoguo Jia Lynn Erbe Allan Peterson |
description | In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b26909097b84fc4ae29901775c0b06c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b26909097b84fc4ae29901775c0b06c</doaj_id><sourcerecordid>oai_doaj_org_article_4b26909097b84fc4ae29901775c0b06c</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-b1ea142d43002c7f9dda380d1311e7ce4d65f216216961e66889bf181dc11e8b3</originalsourceid><addsrcrecordid>eNpNjN1KAzEUhPdCwVp9h7zAQk42zW4uZfGnUPDCeh1OkpOast2UJCK-vevPhczAwMzHXDQr4L1oldJw1VyXcuQctBRy1ZiXdCKWacIa01yYpfpBNLP6RmzE83tNLGR03yNOzMcQKNPsiKUzZawpF4azZ3GudKDcpuwp_8PKTXMZcCp0-5fr5vXhfj8-tbvnx-14t2u9EFBbC4QghZcd58L1QXuP3cA9dADUO5JebYIAtVgrIKWGQdsAA3i3AIPt1s3299cnPJpzjifMnyZhND9FygeDuUY3kZFWKM0X9XaQwUkkoTWHvt84brly3RdNvVyq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some relations between the Caputo fractional difference operators and integer-order differences</title><source>DOAJ Directory of Open Access Journals</source><creator>Baoguo Jia ; Lynn Erbe ; Allan Peterson</creator><creatorcontrib>Baoguo Jia ; Lynn Erbe ; Allan Peterson</creatorcontrib><description>In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1<\nu<N$, $f:\mathbb{N}_{a-N+1}\to\mathbb{R}$, $\nabla^\nu_{a^*}f(t)\geq 0$, for $t\in\mathbb{N}_{a+1}$ and $\nabla^{N-1}f(a)\geq 0$, then $\nabla^{N-1}f(t)\geq 0$ for $t\in\mathbb{N}_a$.</description><identifier>ISSN: 1072-6691</identifier><language>eng</language><publisher>Texas State University</publisher><subject>Caputo fractional difference ; monotonicity ; Taylor monomial</subject><ispartof>Electronic journal of differential equations, 2015-06, Vol.2015 (163), p.1-7</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2096</link.rule.ids></links><search><creatorcontrib>Baoguo Jia</creatorcontrib><creatorcontrib>Lynn Erbe</creatorcontrib><creatorcontrib>Allan Peterson</creatorcontrib><title>Some relations between the Caputo fractional difference operators and integer-order differences</title><title>Electronic journal of differential equations</title><description>In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1<\nu<N$, $f:\mathbb{N}_{a-N+1}\to\mathbb{R}$, $\nabla^\nu_{a^*}f(t)\geq 0$, for $t\in\mathbb{N}_{a+1}$ and $\nabla^{N-1}f(a)\geq 0$, then $\nabla^{N-1}f(t)\geq 0$ for $t\in\mathbb{N}_a$.</description><subject>Caputo fractional difference</subject><subject>monotonicity</subject><subject>Taylor monomial</subject><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNjN1KAzEUhPdCwVp9h7zAQk42zW4uZfGnUPDCeh1OkpOast2UJCK-vevPhczAwMzHXDQr4L1oldJw1VyXcuQctBRy1ZiXdCKWacIa01yYpfpBNLP6RmzE83tNLGR03yNOzMcQKNPsiKUzZawpF4azZ3GudKDcpuwp_8PKTXMZcCp0-5fr5vXhfj8-tbvnx-14t2u9EFBbC4QghZcd58L1QXuP3cA9dADUO5JebYIAtVgrIKWGQdsAA3i3AIPt1s3299cnPJpzjifMnyZhND9FygeDuUY3kZFWKM0X9XaQwUkkoTWHvt84brly3RdNvVyq</recordid><startdate>20150617</startdate><enddate>20150617</enddate><creator>Baoguo Jia</creator><creator>Lynn Erbe</creator><creator>Allan Peterson</creator><general>Texas State University</general><scope>DOA</scope></search><sort><creationdate>20150617</creationdate><title>Some relations between the Caputo fractional difference operators and integer-order differences</title><author>Baoguo Jia ; Lynn Erbe ; Allan Peterson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-b1ea142d43002c7f9dda380d1311e7ce4d65f216216961e66889bf181dc11e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Caputo fractional difference</topic><topic>monotonicity</topic><topic>Taylor monomial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baoguo Jia</creatorcontrib><creatorcontrib>Lynn Erbe</creatorcontrib><creatorcontrib>Allan Peterson</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baoguo Jia</au><au>Lynn Erbe</au><au>Allan Peterson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some relations between the Caputo fractional difference operators and integer-order differences</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2015-06-17</date><risdate>2015</risdate><volume>2015</volume><issue>163</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1072-6691</issn><abstract>In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1<\nu<N$, $f:\mathbb{N}_{a-N+1}\to\mathbb{R}$, $\nabla^\nu_{a^*}f(t)\geq 0$, for $t\in\mathbb{N}_{a+1}$ and $\nabla^{N-1}f(a)\geq 0$, then $\nabla^{N-1}f(t)\geq 0$ for $t\in\mathbb{N}_a$.</abstract><pub>Texas State University</pub><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-6691 |
ispartof | Electronic journal of differential equations, 2015-06, Vol.2015 (163), p.1-7 |
issn | 1072-6691 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4b26909097b84fc4ae29901775c0b06c |
source | DOAJ Directory of Open Access Journals |
subjects | Caputo fractional difference monotonicity Taylor monomial |
title | Some relations between the Caputo fractional difference operators and integer-order differences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20relations%20between%20the%20Caputo%20fractional%20difference%20operators%20and%20integer-order%20differences&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Baoguo%20Jia&rft.date=2015-06-17&rft.volume=2015&rft.issue=163&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1072-6691&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_4b26909097b84fc4ae29901775c0b06c%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-b1ea142d43002c7f9dda380d1311e7ce4d65f216216961e66889bf181dc11e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |