Loading…
Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation
The Dawn mission found that the dominant colour variation on the surface of dwarf planet Ceres is a change of the visible spectral slope, where fresh impact craters are surrounded by blue (negative spectral-sloped) ejecta. The origin of this colour variation is still a mystery. Here we investigate a...
Saved in:
Published in: | Nature communications 2021-01, Vol.12 (1), p.274-274, Article 274 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Dawn mission found that the dominant colour variation on the surface of dwarf planet Ceres is a change of the visible spectral slope, where fresh impact craters are surrounded by blue (negative spectral-sloped) ejecta. The origin of this colour variation is still a mystery. Here we investigate a scenario in which an impact mixes the phyllosilicates present on the surface of Ceres with the water ice just below. In our experiment, Ceres analogue material is suspended in liquid water to create intimately mixed ice particles, which are sublimated under conditions approximating those on Ceres. The sublimation residue has a highly porous, foam-like structure made of phyllosilicates that scattered light in similar blue fashion as the Ceres surface. Our experiment provides a mechanism for the blue colour of fresh craters that can naturally emerge from the Ceres environment.
The origin of blue ejecta around the fresh craters of dwarf planet Ceres is unknown. Here, the authors show that the blue color results from high porosity of the surface, induced by sublimation of ice-phyllosilicate mixture produced by impacts. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-20494-5 |