Loading…
Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells
Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite mater...
Saved in:
Published in: | Scientific reports 2023-07, Vol.13 (1), p.10933-10933, Article 10933 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323 |
container_end_page | 10933 |
container_issue | 1 |
container_start_page | 10933 |
container_title | Scientific reports |
container_volume | 13 |
creator | Penpong, Kwanchai Seriwatanachai, Chaowaphat Naikaew, Atittaya Phuphathanaphong, Napan Thant, Ko Ko Shin Srathongsian, Ladda Sukwiboon, Thunrada Inna, Anuchytt Sahasithiwat, Somboon Pakawatpanurut, Pasit Wongratanaphisan, Duangmanee Ruankham, Pipat Kanjanaboos, Pongsakorn |
description | Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA
0.45
MA
0.49
Cs
0.06
Pb(I
0.62
Br
0.32
Cl
0.06
)
3
) to achieve an optimum band gap (E
g
) of
∼
1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (V
oc
) of 0.93 ± 0.02 V with peak V
oc
of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat. |
doi_str_mv | 10.1038/s41598-023-37155-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b4644c4b57746b9a040cba172b62afb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b4644c4b57746b9a040cba172b62afb</doaj_id><sourcerecordid>2833810533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKPmTg-IVTxUakSEoILF8t2nK2XxF7sZCX-Pd6mLVsO-DLWzDPv2DNTVS8puaCEd28zUJRdQxhvuKCIDTypThkBbBhn7OnR_aQ6z3lLykEmgcrn1QkXQKFDOK1-fI1myXO9cynu808_u3qIadKzj6Hee13vtV2WqZ5vXPGOtQ7B6dGHzQGrfehjMUfJOY461daNY35RPRv0mN35nT2rvn_88O3yc3P95dPV5fvrxiLQuWlJ3xMcpLSGIZGC86GVlGjeoZXY9oNjgBIQGOmk7ZwQSLVEatpeCMIZP6uuVt0-6q3aJT_p9FtF7dWtI6aN0mn2dnQKDLQAFgwKAa2RmgCxRlPBTMv0YIrWu1Vrt5jJ9daFOenxkejjSPA3ahP3qsyEoZSyKLy5U0jx1-LyrCafD_3QwcUlK9ZxZIJTLgr6-h90G5cUSq8OFO8oQc4LxVbKpphzcsPDayg5lO3UugqqrIK6XQUFJenV8T8eUu4HXwC-ArmEwsalv7X_I_sHudW-dA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833810533</pqid></control><display><type>article</type><title>Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Penpong, Kwanchai ; Seriwatanachai, Chaowaphat ; Naikaew, Atittaya ; Phuphathanaphong, Napan ; Thant, Ko Ko Shin ; Srathongsian, Ladda ; Sukwiboon, Thunrada ; Inna, Anuchytt ; Sahasithiwat, Somboon ; Pakawatpanurut, Pasit ; Wongratanaphisan, Duangmanee ; Ruankham, Pipat ; Kanjanaboos, Pongsakorn</creator><creatorcontrib>Penpong, Kwanchai ; Seriwatanachai, Chaowaphat ; Naikaew, Atittaya ; Phuphathanaphong, Napan ; Thant, Ko Ko Shin ; Srathongsian, Ladda ; Sukwiboon, Thunrada ; Inna, Anuchytt ; Sahasithiwat, Somboon ; Pakawatpanurut, Pasit ; Wongratanaphisan, Duangmanee ; Ruankham, Pipat ; Kanjanaboos, Pongsakorn</creatorcontrib><description>Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA
0.45
MA
0.49
Cs
0.06
Pb(I
0.62
Br
0.32
Cl
0.06
)
3
) to achieve an optimum band gap (E
g
) of
∼
1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (V
oc
) of 0.93 ± 0.02 V with peak V
oc
of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-37155-4</identifier><identifier>PMID: 37414854</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/4077/4072/4062 ; Humanities and Social Sciences ; multidisciplinary ; Photovoltaic cells ; Recombination ; Science ; Science (multidisciplinary) ; Solar cells ; Vacuum</subject><ispartof>Scientific reports, 2023-07, Vol.13 (1), p.10933-10933, Article 10933</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323</citedby><cites>FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2833810533/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2833810533?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37414854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penpong, Kwanchai</creatorcontrib><creatorcontrib>Seriwatanachai, Chaowaphat</creatorcontrib><creatorcontrib>Naikaew, Atittaya</creatorcontrib><creatorcontrib>Phuphathanaphong, Napan</creatorcontrib><creatorcontrib>Thant, Ko Ko Shin</creatorcontrib><creatorcontrib>Srathongsian, Ladda</creatorcontrib><creatorcontrib>Sukwiboon, Thunrada</creatorcontrib><creatorcontrib>Inna, Anuchytt</creatorcontrib><creatorcontrib>Sahasithiwat, Somboon</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Wongratanaphisan, Duangmanee</creatorcontrib><creatorcontrib>Ruankham, Pipat</creatorcontrib><creatorcontrib>Kanjanaboos, Pongsakorn</creatorcontrib><title>Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA
0.45
MA
0.49
Cs
0.06
Pb(I
0.62
Br
0.32
Cl
0.06
)
3
) to achieve an optimum band gap (E
g
) of
∼
1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (V
oc
) of 0.93 ± 0.02 V with peak V
oc
of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.</description><subject>639/301/299/946</subject><subject>639/4077/4072/4062</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Recombination</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Vacuum</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKPmTg-IVTxUakSEoILF8t2nK2XxF7sZCX-Pd6mLVsO-DLWzDPv2DNTVS8puaCEd28zUJRdQxhvuKCIDTypThkBbBhn7OnR_aQ6z3lLykEmgcrn1QkXQKFDOK1-fI1myXO9cynu808_u3qIadKzj6Hee13vtV2WqZ5vXPGOtQ7B6dGHzQGrfehjMUfJOY461daNY35RPRv0mN35nT2rvn_88O3yc3P95dPV5fvrxiLQuWlJ3xMcpLSGIZGC86GVlGjeoZXY9oNjgBIQGOmk7ZwQSLVEatpeCMIZP6uuVt0-6q3aJT_p9FtF7dWtI6aN0mn2dnQKDLQAFgwKAa2RmgCxRlPBTMv0YIrWu1Vrt5jJ9daFOenxkejjSPA3ahP3qsyEoZSyKLy5U0jx1-LyrCafD_3QwcUlK9ZxZIJTLgr6-h90G5cUSq8OFO8oQc4LxVbKpphzcsPDayg5lO3UugqqrIK6XQUFJenV8T8eUu4HXwC-ArmEwsalv7X_I_sHudW-dA</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>Penpong, Kwanchai</creator><creator>Seriwatanachai, Chaowaphat</creator><creator>Naikaew, Atittaya</creator><creator>Phuphathanaphong, Napan</creator><creator>Thant, Ko Ko Shin</creator><creator>Srathongsian, Ladda</creator><creator>Sukwiboon, Thunrada</creator><creator>Inna, Anuchytt</creator><creator>Sahasithiwat, Somboon</creator><creator>Pakawatpanurut, Pasit</creator><creator>Wongratanaphisan, Duangmanee</creator><creator>Ruankham, Pipat</creator><creator>Kanjanaboos, Pongsakorn</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230706</creationdate><title>Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells</title><author>Penpong, Kwanchai ; Seriwatanachai, Chaowaphat ; Naikaew, Atittaya ; Phuphathanaphong, Napan ; Thant, Ko Ko Shin ; Srathongsian, Ladda ; Sukwiboon, Thunrada ; Inna, Anuchytt ; Sahasithiwat, Somboon ; Pakawatpanurut, Pasit ; Wongratanaphisan, Duangmanee ; Ruankham, Pipat ; Kanjanaboos, Pongsakorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/299/946</topic><topic>639/4077/4072/4062</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Recombination</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penpong, Kwanchai</creatorcontrib><creatorcontrib>Seriwatanachai, Chaowaphat</creatorcontrib><creatorcontrib>Naikaew, Atittaya</creatorcontrib><creatorcontrib>Phuphathanaphong, Napan</creatorcontrib><creatorcontrib>Thant, Ko Ko Shin</creatorcontrib><creatorcontrib>Srathongsian, Ladda</creatorcontrib><creatorcontrib>Sukwiboon, Thunrada</creatorcontrib><creatorcontrib>Inna, Anuchytt</creatorcontrib><creatorcontrib>Sahasithiwat, Somboon</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Wongratanaphisan, Duangmanee</creatorcontrib><creatorcontrib>Ruankham, Pipat</creatorcontrib><creatorcontrib>Kanjanaboos, Pongsakorn</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penpong, Kwanchai</au><au>Seriwatanachai, Chaowaphat</au><au>Naikaew, Atittaya</au><au>Phuphathanaphong, Napan</au><au>Thant, Ko Ko Shin</au><au>Srathongsian, Ladda</au><au>Sukwiboon, Thunrada</au><au>Inna, Anuchytt</au><au>Sahasithiwat, Somboon</au><au>Pakawatpanurut, Pasit</au><au>Wongratanaphisan, Duangmanee</au><au>Ruankham, Pipat</au><au>Kanjanaboos, Pongsakorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-07-06</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>10933</spage><epage>10933</epage><pages>10933-10933</pages><artnum>10933</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA
0.45
MA
0.49
Cs
0.06
Pb(I
0.62
Br
0.32
Cl
0.06
)
3
) to achieve an optimum band gap (E
g
) of
∼
1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (V
oc
) of 0.93 ± 0.02 V with peak V
oc
of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37414854</pmid><doi>10.1038/s41598-023-37155-4</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-07, Vol.13 (1), p.10933-10933, Article 10933 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4b4644c4b57746b9a040cba172b62afb |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/299/946 639/4077/4072/4062 Humanities and Social Sciences multidisciplinary Photovoltaic cells Recombination Science Science (multidisciplinary) Solar cells Vacuum |
title | Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20perovskite%20formation%20via%20vacuum%20thermal%20annealing%20for%20indoor%20perovskite%20solar%20cells&rft.jtitle=Scientific%20reports&rft.au=Penpong,%20Kwanchai&rft.date=2023-07-06&rft.volume=13&rft.issue=1&rft.spage=10933&rft.epage=10933&rft.pages=10933-10933&rft.artnum=10933&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-37155-4&rft_dat=%3Cproquest_doaj_%3E2833810533%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-60dd05f99cb2509733f6910a385c956dfe24594542089c8e7751a951b6d770323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2833810533&rft_id=info:pmid/37414854&rfr_iscdi=true |