Loading…
Lactiplantibacillus plantarum: a new example of inclusion body producing bacteria
Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysacchari...
Saved in:
Published in: | Microbial cell factories 2023-06, Vol.22 (1), p.111-11, Article 111 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lactic Acid Bacteria such as Lactococcus lactis, Latilactobacillus sakei (basonym: Lactobacillus sakei) and Lactiplantibacillus plantarum (basonym: Lactobacillus plantarum) have gained importance as recombinant cell factories. Although it was believed that proteins produced in these lipopolysaccharides (LPS)-free microorganisms do not aggregate, it has been shown that L. lactis produce inclusion bodies (IBs) during the recombinant production process. These protein aggregates contain biologically active protein, which is slowly released, being a biomaterial with a broad range of applications including the obtainment of soluble protein. However, the aggregation phenomenon has not been characterized so far in L. plantarum. Thus, the current study aims to determine the formation of protein aggregates in L. plantarum and evaluate their possible applications.
To evaluate the formation of IBs in L. plantarum, the catalytic domain of bovine metalloproteinase 9 (MMP-9cat) protein has been used as model protein, being a prone-to-aggregate (PTA) protein. The electron microscopy micrographs showed the presence of electron-dense structures in L. plantarum cytoplasm, which were further purified and analyzed. The ultrastructure of the isolated protein aggregates, which were smooth, round and with an average size of 250-300 nm, proved that L. plantarum also forms IBs under recombinant production processes of PTA proteins. Besides, the protein embedded in these aggregates was fully active and had the potential to be used as a source of soluble protein or as active nanoparticles. The activity determination of the soluble protein solubilized from these IBs using non-denaturing protocols proved that fully active protein could be obtained from these protein aggregates.
These results proved that L. plantarum forms aggregates under recombinant production conditions. These aggregates showed the same properties as IBs formed in other expression systems such as Escherichia coli or L. lactis. Thus, this places this LPS-free microorganism as an interesting alternative to produce proteins of interest for the biopharmaceutical industry, which are obtained from the IBs in an important number of cases. |
---|---|
ISSN: | 1475-2859 1475-2859 |
DOI: | 10.1186/s12934-023-02120-3 |