Loading…
Reduction of Residual Quenching Stresses in 2A14 Aluminum Alloy Tapered Cylinder Forgings via a Novel Cold Bulging Process
This study combined finite element method (FEM) simulations and physical experiments to develop a novel cold bulging process, with the aim of studying and mitigating the quenching residual stresses in 2A14 tapered cylinder forgings. The samples underwent cold bulging at different ratios (0–4.0%) to...
Saved in:
Published in: | Metals (Basel ) 2021-05, Vol.11 (5), p.717 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study combined finite element method (FEM) simulations and physical experiments to develop a novel cold bulging process, with the aim of studying and mitigating the quenching residual stresses in 2A14 tapered cylinder forgings. The samples underwent cold bulging at different ratios (0–4.0%) to evaluate the residual stress reduction performance (via the hole-drilling strain-gauge method) and the improvements in their mechanical properties. The FEM simulation and experimental results revealed that our proposed cold bulging process reduced the quenching residual stresses by up to 85–87%. The density and uniformity of the precipitated phases increased along with the extent of cold bulging, as confirmed by transmission electron microscope (TEM) observations. Furthermore, compared to the unprocessed samples, the tensile and yield strengths, and elongation of the samples with 3% cold bulging were significantly enhanced (65 MPa, 55 MPa, and 1.7%, respectively). |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met11050717 |