Loading…
Characterization of cross-reactive, non-neutralizing monoclonal antibodies against a pandemic GII.4 norovirus variant
Antibodies are thought to play a major role in protection against human norovirus infection. Mouse humoral responses closely mimic those of humans; thus, mouse models are used to characterize norovirus epitopes on the major viral capsid protein, VP1. We have developed a panel of mouse monoclonal ant...
Saved in:
Published in: | Microbiology spectrum 2024-12, Vol.12 (12), p.e0114324 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antibodies are thought to play a major role in protection against human norovirus infection. Mouse humoral responses closely mimic those of humans; thus, mouse models are used to characterize norovirus epitopes on the major viral capsid protein, VP1. We have developed a panel of mouse monoclonal antibodies (mAbs) produced against the last pandemic variant to emerge, Sydney 2012. While most mAbs (25/44) were mapped to variable antigenic sites on VP1, 19 of the mAbs were cross-reactive against multiple genotypes or GII.4 variants. Most (12/19) of the cross-reactive mAbs bound to the Shell domain and were cross-reactive with different GII noroviruses. Interestingly, mAb 30A11 exhibited cross-reactivity against all tested norovirus genotypes (GI, GII, GIV, and GIX). This mAb was mapped to a highly conserved region of the Shell domain (
PIDPWII
) using peptide ELISA and immunofluorescence. Of those mapping to the Protruding (P) domain, two (19C10 and 14B11) showed cross-reactivity with GII noroviruses. Using hydrogen-deuterium exchange mass spectrometry, we mapped 19C10 to a conserved region of the P domain near the P/Shell interface, which explains its cross-reactivity with different GII noroviruses and lack of histo-blood group antigen-blocking activity. Binding and mutational analyses showed that residues 518, 519, and 525 are important for 19C10 and 14B11 epitope recognition. While the antibodies described here are mostly non-neutralizing, they can be useful tools for research and diagnostics of noroviruses. The role of non-neutralizing, cross-reactive antibodies targeting different areas of the viral capsid merits further research to facilitate our understanding of immunity to norovirus infection and disease.
To gain insights into the overall immune responses to human norovirus, we characterized non-neutralizing, cross-reactive monoclonal antibodies (mAbs) developed against a pandemic GII.4 norovirus. We determined the binding epitope of an antibody that exhibited cross-reactivity against all tested noroviruses, which makes it a useful tool for research and diagnostics. The epitope of two additional non-neutralizing mAbs was mapped to a less conserved region on the viral capsid protein, explaining their cross-reactivity patterns. Often overlooked, the role of non-neutralizing, cross-reactive mAbs merits further research to facilitate our understanding of immunity to norovirus infection and disease. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.01143-24 |