Loading…

Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure

The Lisbon metropolitan area (LMA, central-west of Portugal) has been severely affected by different geohazards (flooding episodes, landslides, subsidence, and earthquakes) that have generated considerable damage to properties and infrastructures, in the order of millions of euros per year. This stu...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (16), p.4084
Main Authors: Cuervas-Mons, José, Zêzere, José Luis, Domínguez-Cuesta, María José, Barra, Anna, Reyes-Carmona, Cristina, Monserrat, Oriol, Oliveira, Sergio Cruz, Melo, Raquel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Lisbon metropolitan area (LMA, central-west of Portugal) has been severely affected by different geohazards (flooding episodes, landslides, subsidence, and earthquakes) that have generated considerable damage to properties and infrastructures, in the order of millions of euros per year. This study is focused on the analysis of subsidence, as related to urban and industrial activity. Utilizing the A-DInSAR dataset and applying active deformation areas (ADA) processing at the regional scale has allowed us to perform a detailed analysis of subsidence phenomena in the LMA. The dataset consisted of 48 ascending and 61 descending SAR IW-SLC images acquired by the Sentinel-1 A satellite between January 2018 and April 2020. The line-of-sight (LOS), mean deformation velocity (VLOS) maps (mm year−1), and deformation time series (mm) were obtained via the Geohazard Exploitation Platform service of the European Space Agency. The maximum VLOS detected, with ascending and descending datasets, were −38.0 and −32.2 mm year−1, respectively. ADA processing over the LMA allowed for 592 ascending and 560 descending ADAs to be extracted and delimited. From the VLOS measured in both trajectories, a vertical velocity with a maximum value of −32.4 mm year−1 was estimated. The analyzed subsidence was associated to four ascending and three descending ADAs and characterized by maximum VLOS of −25.5 and −25.2 mm year−1. The maximum vertical velocity associated with urban subsidence was −32.4 mm year−1. This subsidence is mainly linked to the compaction of the alluvial and anthropic deposits in the areas where urban and industrial sectors are located. The results of this work have allowed to: (1) detect and assess, from a quantitative point of view, the subsidence phenomena in populated and industrial areas of LMA; (2) establish the relationships between the subsidence phenomena and geological and hydrological characteristics.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14164084