Loading…

Data-driven models for predicting compressive strength of 3D-printed fiber-reinforced concrete using interpretable machine learning algorithms

3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challengi...

Full description

Saved in:
Bibliographic Details
Published in:Case Studies in Construction Materials 2024-12, Vol.21, p.e03935, Article e03935
Main Authors: Arif, Muhammad, Jan, Faizullah, Rezzoug, Aïssa, Afridi, Muhammad Ali, Luqman, Muhammad, Khan, Waseem Akhtar, Kujawa, Marcin, Alabduljabbar, Hisham, Khan, Majid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning techniques, including Gene Expression Programming (GEP), Multi-Expression Programming (MEP), and Decision Tree (DT), to forecast the compressive strength of 3D printed fiber-reinforced concrete (3DP-FRC). The dataset comprises 299 data points with sixteen variables gathered from experimental research studies. For training the model, 70 % of the dataset was used, while the remaining 30 % was reserved for model testing. Several statistical metrics were utilized to evaluate the accuracy and applicability of the models. In addition, SHapley Additive exPlanations (SHAP), partial dependence plots, and individual conditional expectations approach were employed for the interpretability of the models. The proposed GEP, MEP, and DT models indicated enhanced efficacy, exhibiting correlation coefficient (R) scores of 0.996, 0.987, and 0.990, with mean absolute errors (MAE) of 1.029, 4.832, and 2.513, respectively. Overall, the established GEP model demonstrated exceptional performance compared to MEP and DT, showcasing high prediction precision in assessing the strength of 3DP-FRC. Moreover, a simple empirical formulation has been devised using GEP to predict the compressive strength, offering a simplified and efficient approach for predicting 3DP-FRC strength. The SHAP approach identified water, silica fume, fiber diameter, curing age, and loading directions as leading controlling parameters in predicting strength of 3DP-FRC. In summary, the proposed models can potentially minimize both the computational workload and the need for experimental trials in formulating the mixed design of 3D-printed concrete.
ISSN:2214-5095
2214-5095
DOI:10.1016/j.cscm.2024.e03935