Loading…

High-performance thermomagnetic generator controlled by a magnetocaloric switch

Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magneti...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-08, Vol.14 (1), p.4811-4811, Article 4811
Main Authors: Liu, Xianliang, Chen, Haodong, Huang, Jianyi, Qiao, Kaiming, Yu, Ziyuan, Xie, Longlong, Ramanujan, Raju V., Hu, Fengxia, Chu, Ke, Long, Yi, Zhang, Hu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173
cites cdi_FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173
container_end_page 4811
container_issue 1
container_start_page 4811
container_title Nature communications
container_volume 14
creator Liu, Xianliang
Chen, Haodong
Huang, Jianyi
Qiao, Kaiming
Yu, Ziyuan
Xie, Longlong
Ramanujan, Raju V.
Hu, Fengxia
Chu, Ke
Long, Yi
Zhang, Hu
description Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density P Dmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch. The utilization of waste heat is an important way of combining energy saving to emission reductions. Here, authors demonstrate a magnetocaloric material as a controlling switch in a thermomagnetic generator for waste heat recovery.
doi_str_mv 10.1038/s41467-023-40634-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b7d982936a64a97891fc0f7c54db0c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b7d982936a64a97891fc0f7c54db0c5</doaj_id><sourcerecordid>2848845465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173</originalsourceid><addsrcrecordid>eNp9kctO3DAUhq2qCBDwAiyqSGy6SfH9skIIlYuExAbWlsd2Mhkl8WBnWnj7HiaUSxe1LNuy__Odc_wjdEzwD4KZPi2ccKlqTFnNsWS8fvqC9inmpCaKsq8fznvoqJQVhsEM0Zzvoj2mhNBSiH10d921y3odc5Py4EYfq2kZ85AG145x6nzVxjFmN6Vc-TROOfV9DNXiuXLVLEne9SmDsPzuJr88RDuN60s8et0P0MPlz_uL6_r27urm4vy29oKTqTY6cOmkZqaBSag2yhCvmHCCyiCDp412OjSce-MIM0IqTbEXRgUaMVHsAN3M3JDcyq5zN7j8bJPr7PYi5da6DPX30fKFCkZTwyAhd0ZpQxqPGwWVhAUwgXU2s9abxRCDj9Cn6z9BP7-M3dK26Zcl8MVUEg2E76-EnB43sUx26IqPfe_GmDbFUs215oLLl2Qn_0hXaZNH-KutClMMK6jorPI5lZJj81YNwfbFfzv7b8F_u_XfPkHQt499vIX8dRsEbBYUeBrbmN9z_wf7B0GYu2c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848020848</pqid></control><display><type>article</type><title>High-performance thermomagnetic generator controlled by a magnetocaloric switch</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Xianliang ; Chen, Haodong ; Huang, Jianyi ; Qiao, Kaiming ; Yu, Ziyuan ; Xie, Longlong ; Ramanujan, Raju V. ; Hu, Fengxia ; Chu, Ke ; Long, Yi ; Zhang, Hu</creator><creatorcontrib>Liu, Xianliang ; Chen, Haodong ; Huang, Jianyi ; Qiao, Kaiming ; Yu, Ziyuan ; Xie, Longlong ; Ramanujan, Raju V. ; Hu, Fengxia ; Chu, Ke ; Long, Yi ; Zhang, Hu</creatorcontrib><description>Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density P Dmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch. The utilization of waste heat is an important way of combining energy saving to emission reductions. Here, authors demonstrate a magnetocaloric material as a controlling switch in a thermomagnetic generator for waste heat recovery.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40634-x</identifier><identifier>PMID: 37558655</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/119/997 ; 639/4077/4072/4062 ; Circuit design ; Emissions control ; Energy conservation ; Heat ; Heat recovery ; Heat recovery systems ; Humanities and Social Sciences ; Magnetic circuits ; Magnetic materials ; multidisciplinary ; Science ; Science (multidisciplinary) ; Topology ; Waste heat ; Waste heat recovery ; Waste recovery ; Waste utilization</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4811-4811, Article 4811</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173</citedby><cites>FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173</cites><orcidid>0000-0001-8726-8605 ; 0000-0003-0383-0213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848020848/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848020848?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37558655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xianliang</creatorcontrib><creatorcontrib>Chen, Haodong</creatorcontrib><creatorcontrib>Huang, Jianyi</creatorcontrib><creatorcontrib>Qiao, Kaiming</creatorcontrib><creatorcontrib>Yu, Ziyuan</creatorcontrib><creatorcontrib>Xie, Longlong</creatorcontrib><creatorcontrib>Ramanujan, Raju V.</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><title>High-performance thermomagnetic generator controlled by a magnetocaloric switch</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density P Dmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch. The utilization of waste heat is an important way of combining energy saving to emission reductions. Here, authors demonstrate a magnetocaloric material as a controlling switch in a thermomagnetic generator for waste heat recovery.</description><subject>639/166/987</subject><subject>639/301/119/997</subject><subject>639/4077/4072/4062</subject><subject>Circuit design</subject><subject>Emissions control</subject><subject>Energy conservation</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic circuits</subject><subject>Magnetic materials</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Topology</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><subject>Waste utilization</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctO3DAUhq2qCBDwAiyqSGy6SfH9skIIlYuExAbWlsd2Mhkl8WBnWnj7HiaUSxe1LNuy__Odc_wjdEzwD4KZPi2ccKlqTFnNsWS8fvqC9inmpCaKsq8fznvoqJQVhsEM0Zzvoj2mhNBSiH10d921y3odc5Py4EYfq2kZ85AG145x6nzVxjFmN6Vc-TROOfV9DNXiuXLVLEne9SmDsPzuJr88RDuN60s8et0P0MPlz_uL6_r27urm4vy29oKTqTY6cOmkZqaBSag2yhCvmHCCyiCDp412OjSce-MIM0IqTbEXRgUaMVHsAN3M3JDcyq5zN7j8bJPr7PYi5da6DPX30fKFCkZTwyAhd0ZpQxqPGwWVhAUwgXU2s9abxRCDj9Cn6z9BP7-M3dK26Zcl8MVUEg2E76-EnB43sUx26IqPfe_GmDbFUs215oLLl2Qn_0hXaZNH-KutClMMK6jorPI5lZJj81YNwfbFfzv7b8F_u_XfPkHQt499vIX8dRsEbBYUeBrbmN9z_wf7B0GYu2c</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Liu, Xianliang</creator><creator>Chen, Haodong</creator><creator>Huang, Jianyi</creator><creator>Qiao, Kaiming</creator><creator>Yu, Ziyuan</creator><creator>Xie, Longlong</creator><creator>Ramanujan, Raju V.</creator><creator>Hu, Fengxia</creator><creator>Chu, Ke</creator><creator>Long, Yi</creator><creator>Zhang, Hu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8726-8605</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid></search><sort><creationdate>20230809</creationdate><title>High-performance thermomagnetic generator controlled by a magnetocaloric switch</title><author>Liu, Xianliang ; Chen, Haodong ; Huang, Jianyi ; Qiao, Kaiming ; Yu, Ziyuan ; Xie, Longlong ; Ramanujan, Raju V. ; Hu, Fengxia ; Chu, Ke ; Long, Yi ; Zhang, Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/987</topic><topic>639/301/119/997</topic><topic>639/4077/4072/4062</topic><topic>Circuit design</topic><topic>Emissions control</topic><topic>Energy conservation</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic circuits</topic><topic>Magnetic materials</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Topology</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><topic>Waste utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xianliang</creatorcontrib><creatorcontrib>Chen, Haodong</creatorcontrib><creatorcontrib>Huang, Jianyi</creatorcontrib><creatorcontrib>Qiao, Kaiming</creatorcontrib><creatorcontrib>Yu, Ziyuan</creatorcontrib><creatorcontrib>Xie, Longlong</creatorcontrib><creatorcontrib>Ramanujan, Raju V.</creatorcontrib><creatorcontrib>Hu, Fengxia</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><creatorcontrib>Long, Yi</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xianliang</au><au>Chen, Haodong</au><au>Huang, Jianyi</au><au>Qiao, Kaiming</au><au>Yu, Ziyuan</au><au>Xie, Longlong</au><au>Ramanujan, Raju V.</au><au>Hu, Fengxia</au><au>Chu, Ke</au><au>Long, Yi</au><au>Zhang, Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance thermomagnetic generator controlled by a magnetocaloric switch</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4811</spage><epage>4811</epage><pages>4811-4811</pages><artnum>4811</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density P Dmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch. The utilization of waste heat is an important way of combining energy saving to emission reductions. Here, authors demonstrate a magnetocaloric material as a controlling switch in a thermomagnetic generator for waste heat recovery.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37558655</pmid><doi>10.1038/s41467-023-40634-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8726-8605</orcidid><orcidid>https://orcid.org/0000-0003-0383-0213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-08, Vol.14 (1), p.4811-4811, Article 4811
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4b7d982936a64a97891fc0f7c54db0c5
source Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/987
639/301/119/997
639/4077/4072/4062
Circuit design
Emissions control
Energy conservation
Heat
Heat recovery
Heat recovery systems
Humanities and Social Sciences
Magnetic circuits
Magnetic materials
multidisciplinary
Science
Science (multidisciplinary)
Topology
Waste heat
Waste heat recovery
Waste recovery
Waste utilization
title High-performance thermomagnetic generator controlled by a magnetocaloric switch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20thermomagnetic%20generator%20controlled%20by%20a%20magnetocaloric%20switch&rft.jtitle=Nature%20communications&rft.au=Liu,%20Xianliang&rft.date=2023-08-09&rft.volume=14&rft.issue=1&rft.spage=4811&rft.epage=4811&rft.pages=4811-4811&rft.artnum=4811&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40634-x&rft_dat=%3Cproquest_doaj_%3E2848845465%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-98d46a6839f39f1289791c735a526d6dc2f8a8df44c9a139567820c597d2e0173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848020848&rft_id=info:pmid/37558655&rfr_iscdi=true