Loading…
A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein
Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we foun...
Saved in:
Published in: | International journal of molecular sciences 2022-10, Vol.23 (19), p.11208 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3 |
container_end_page | |
container_issue | 19 |
container_start_page | 11208 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Minerva, Dhisa Othman, Nuha Loling Nakazawa, Takashi Ito, Yukinobu Yoshida, Makoto Goto, Akiteru Suzuki, Takashi |
description | Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data. |
doi_str_mv | 10.3390/ijms231911208 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35</doaj_id><sourcerecordid>2725199658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</originalsourceid><addsrcrecordid>eNpdksuLFDEQxhtR3IcevQe8eGnNq5PORRiGdRwYH4h6DemkuidDd7Im6ZX97-3ZWcTxVB9VHz--KqqqXhH8ljGF3_nDlCkjihCK2yfVJeGU1hgL-fQffVFd5XzAmDLaqOfVBRNHheVlNa3QZ_iN1nuYYjG2eIs-gd2b4POENvEOUshoF8NQfzNhALQKg48DBMg-o21wswWHunv01RS792FAJqBVKpC8GdEmmb4gH0pEBv0EH15Uz3ozZnj5WK-rHx9uvq8_1rsvm-16tastJ7zUkgGFTjLSAQbqbNvY1jZC9bijQklinSVAgHWus8oxRyh3pHeslT1nPTXsutqeuC6ag75NfjLpXkfj9UMjpkGbtOw6guad7Blhsm0c5wCkE9wpphRnQizIZmG9P7Fu524CZyGUZMYz6Pkk-L0e4p1WS-KmUQvgzSMgxV8z5KInny2MowkQ56yppA1RSjTtYn39n_UQ5xSWUx1dnLZckGOi-uSyKeacoP8bhmB9fAp99hTsD43pqQk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724284615</pqid></control><display><type>article</type><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</creator><creatorcontrib>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</creatorcontrib><description>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms231911208</identifier><identifier>PMID: 36232507</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Angiogenesis ; arterial patch ; Blood vessels ; cell driving force ; Chemotaxis ; Concentration gradient ; Fistula ; Growth factors ; hybrid simulation ; Mathematical models ; Motility ; Partial differential equations ; Permeability ; Rabbits ; Simulation ; Vascular endothelial growth factor ; VEGF ; Veins & arteries ; Velocity</subject><ispartof>International journal of molecular sciences, 2022-10, Vol.23 (19), p.11208</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</cites><orcidid>0000-0001-8776-9004 ; 0000-0002-5889-812X ; 0000-0002-1774-1169 ; 0000-0001-5767-3546 ; 0000-0002-0203-5587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724284615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724284615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Minerva, Dhisa</creatorcontrib><creatorcontrib>Othman, Nuha Loling</creatorcontrib><creatorcontrib>Nakazawa, Takashi</creatorcontrib><creatorcontrib>Ito, Yukinobu</creatorcontrib><creatorcontrib>Yoshida, Makoto</creatorcontrib><creatorcontrib>Goto, Akiteru</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><title>International journal of molecular sciences</title><description>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</description><subject>Angiogenesis</subject><subject>arterial patch</subject><subject>Blood vessels</subject><subject>cell driving force</subject><subject>Chemotaxis</subject><subject>Concentration gradient</subject><subject>Fistula</subject><subject>Growth factors</subject><subject>hybrid simulation</subject><subject>Mathematical models</subject><subject>Motility</subject><subject>Partial differential equations</subject><subject>Permeability</subject><subject>Rabbits</subject><subject>Simulation</subject><subject>Vascular endothelial growth factor</subject><subject>VEGF</subject><subject>Veins & arteries</subject><subject>Velocity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksuLFDEQxhtR3IcevQe8eGnNq5PORRiGdRwYH4h6DemkuidDd7Im6ZX97-3ZWcTxVB9VHz--KqqqXhH8ljGF3_nDlCkjihCK2yfVJeGU1hgL-fQffVFd5XzAmDLaqOfVBRNHheVlNa3QZ_iN1nuYYjG2eIs-gd2b4POENvEOUshoF8NQfzNhALQKg48DBMg-o21wswWHunv01RS792FAJqBVKpC8GdEmmb4gH0pEBv0EH15Uz3ozZnj5WK-rHx9uvq8_1rsvm-16tastJ7zUkgGFTjLSAQbqbNvY1jZC9bijQklinSVAgHWus8oxRyh3pHeslT1nPTXsutqeuC6ag75NfjLpXkfj9UMjpkGbtOw6guad7Blhsm0c5wCkE9wpphRnQizIZmG9P7Fu524CZyGUZMYz6Pkk-L0e4p1WS-KmUQvgzSMgxV8z5KInny2MowkQ56yppA1RSjTtYn39n_UQ5xSWUx1dnLZckGOi-uSyKeacoP8bhmB9fAp99hTsD43pqQk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Minerva, Dhisa</creator><creator>Othman, Nuha Loling</creator><creator>Nakazawa, Takashi</creator><creator>Ito, Yukinobu</creator><creator>Yoshida, Makoto</creator><creator>Goto, Akiteru</creator><creator>Suzuki, Takashi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8776-9004</orcidid><orcidid>https://orcid.org/0000-0002-5889-812X</orcidid><orcidid>https://orcid.org/0000-0002-1774-1169</orcidid><orcidid>https://orcid.org/0000-0001-5767-3546</orcidid><orcidid>https://orcid.org/0000-0002-0203-5587</orcidid></search><sort><creationdate>20221001</creationdate><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><author>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>arterial patch</topic><topic>Blood vessels</topic><topic>cell driving force</topic><topic>Chemotaxis</topic><topic>Concentration gradient</topic><topic>Fistula</topic><topic>Growth factors</topic><topic>hybrid simulation</topic><topic>Mathematical models</topic><topic>Motility</topic><topic>Partial differential equations</topic><topic>Permeability</topic><topic>Rabbits</topic><topic>Simulation</topic><topic>Vascular endothelial growth factor</topic><topic>VEGF</topic><topic>Veins & arteries</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minerva, Dhisa</creatorcontrib><creatorcontrib>Othman, Nuha Loling</creatorcontrib><creatorcontrib>Nakazawa, Takashi</creatorcontrib><creatorcontrib>Ito, Yukinobu</creatorcontrib><creatorcontrib>Yoshida, Makoto</creatorcontrib><creatorcontrib>Goto, Akiteru</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minerva, Dhisa</au><au>Othman, Nuha Loling</au><au>Nakazawa, Takashi</au><au>Ito, Yukinobu</au><au>Yoshida, Makoto</au><au>Goto, Akiteru</au><au>Suzuki, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>19</issue><spage>11208</spage><pages>11208-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36232507</pmid><doi>10.3390/ijms231911208</doi><orcidid>https://orcid.org/0000-0001-8776-9004</orcidid><orcidid>https://orcid.org/0000-0002-5889-812X</orcidid><orcidid>https://orcid.org/0000-0002-1774-1169</orcidid><orcidid>https://orcid.org/0000-0001-5767-3546</orcidid><orcidid>https://orcid.org/0000-0002-0203-5587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-10, Vol.23 (19), p.11208 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Angiogenesis arterial patch Blood vessels cell driving force Chemotaxis Concentration gradient Fistula Growth factors hybrid simulation Mathematical models Motility Partial differential equations Permeability Rabbits Simulation Vascular endothelial growth factor VEGF Veins & arteries Velocity |
title | A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Chemotactic%20Mechanism%20Governs%20Long-Range%20Angiogenesis%20Induced%20by%20Patching%20an%20Arterial%20Graft%20into%20a%20Vein&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Minerva,%20Dhisa&rft.date=2022-10-01&rft.volume=23&rft.issue=19&rft.spage=11208&rft.pages=11208-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms231911208&rft_dat=%3Cproquest_doaj_%3E2725199658%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724284615&rft_id=info:pmid/36232507&rfr_iscdi=true |