Loading…

A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein

Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we foun...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-10, Vol.23 (19), p.11208
Main Authors: Minerva, Dhisa, Othman, Nuha Loling, Nakazawa, Takashi, Ito, Yukinobu, Yoshida, Makoto, Goto, Akiteru, Suzuki, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3
container_end_page
container_issue 19
container_start_page 11208
container_title International journal of molecular sciences
container_volume 23
creator Minerva, Dhisa
Othman, Nuha Loling
Nakazawa, Takashi
Ito, Yukinobu
Yoshida, Makoto
Goto, Akiteru
Suzuki, Takashi
description Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.
doi_str_mv 10.3390/ijms231911208
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35</doaj_id><sourcerecordid>2725199658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</originalsourceid><addsrcrecordid>eNpdksuLFDEQxhtR3IcevQe8eGnNq5PORRiGdRwYH4h6DemkuidDd7Im6ZX97-3ZWcTxVB9VHz--KqqqXhH8ljGF3_nDlCkjihCK2yfVJeGU1hgL-fQffVFd5XzAmDLaqOfVBRNHheVlNa3QZ_iN1nuYYjG2eIs-gd2b4POENvEOUshoF8NQfzNhALQKg48DBMg-o21wswWHunv01RS792FAJqBVKpC8GdEmmb4gH0pEBv0EH15Uz3ozZnj5WK-rHx9uvq8_1rsvm-16tastJ7zUkgGFTjLSAQbqbNvY1jZC9bijQklinSVAgHWus8oxRyh3pHeslT1nPTXsutqeuC6ag75NfjLpXkfj9UMjpkGbtOw6guad7Blhsm0c5wCkE9wpphRnQizIZmG9P7Fu524CZyGUZMYz6Pkk-L0e4p1WS-KmUQvgzSMgxV8z5KInny2MowkQ56yppA1RSjTtYn39n_UQ5xSWUx1dnLZckGOi-uSyKeacoP8bhmB9fAp99hTsD43pqQk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724284615</pqid></control><display><type>article</type><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</creator><creatorcontrib>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</creatorcontrib><description>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms231911208</identifier><identifier>PMID: 36232507</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Angiogenesis ; arterial patch ; Blood vessels ; cell driving force ; Chemotaxis ; Concentration gradient ; Fistula ; Growth factors ; hybrid simulation ; Mathematical models ; Motility ; Partial differential equations ; Permeability ; Rabbits ; Simulation ; Vascular endothelial growth factor ; VEGF ; Veins &amp; arteries ; Velocity</subject><ispartof>International journal of molecular sciences, 2022-10, Vol.23 (19), p.11208</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</cites><orcidid>0000-0001-8776-9004 ; 0000-0002-5889-812X ; 0000-0002-1774-1169 ; 0000-0001-5767-3546 ; 0000-0002-0203-5587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724284615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724284615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Minerva, Dhisa</creatorcontrib><creatorcontrib>Othman, Nuha Loling</creatorcontrib><creatorcontrib>Nakazawa, Takashi</creatorcontrib><creatorcontrib>Ito, Yukinobu</creatorcontrib><creatorcontrib>Yoshida, Makoto</creatorcontrib><creatorcontrib>Goto, Akiteru</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><title>International journal of molecular sciences</title><description>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</description><subject>Angiogenesis</subject><subject>arterial patch</subject><subject>Blood vessels</subject><subject>cell driving force</subject><subject>Chemotaxis</subject><subject>Concentration gradient</subject><subject>Fistula</subject><subject>Growth factors</subject><subject>hybrid simulation</subject><subject>Mathematical models</subject><subject>Motility</subject><subject>Partial differential equations</subject><subject>Permeability</subject><subject>Rabbits</subject><subject>Simulation</subject><subject>Vascular endothelial growth factor</subject><subject>VEGF</subject><subject>Veins &amp; arteries</subject><subject>Velocity</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksuLFDEQxhtR3IcevQe8eGnNq5PORRiGdRwYH4h6DemkuidDd7Im6ZX97-3ZWcTxVB9VHz--KqqqXhH8ljGF3_nDlCkjihCK2yfVJeGU1hgL-fQffVFd5XzAmDLaqOfVBRNHheVlNa3QZ_iN1nuYYjG2eIs-gd2b4POENvEOUshoF8NQfzNhALQKg48DBMg-o21wswWHunv01RS792FAJqBVKpC8GdEmmb4gH0pEBv0EH15Uz3ozZnj5WK-rHx9uvq8_1rsvm-16tastJ7zUkgGFTjLSAQbqbNvY1jZC9bijQklinSVAgHWus8oxRyh3pHeslT1nPTXsutqeuC6ag75NfjLpXkfj9UMjpkGbtOw6guad7Blhsm0c5wCkE9wpphRnQizIZmG9P7Fu524CZyGUZMYz6Pkk-L0e4p1WS-KmUQvgzSMgxV8z5KInny2MowkQ56yppA1RSjTtYn39n_UQ5xSWUx1dnLZckGOi-uSyKeacoP8bhmB9fAp99hTsD43pqQk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Minerva, Dhisa</creator><creator>Othman, Nuha Loling</creator><creator>Nakazawa, Takashi</creator><creator>Ito, Yukinobu</creator><creator>Yoshida, Makoto</creator><creator>Goto, Akiteru</creator><creator>Suzuki, Takashi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8776-9004</orcidid><orcidid>https://orcid.org/0000-0002-5889-812X</orcidid><orcidid>https://orcid.org/0000-0002-1774-1169</orcidid><orcidid>https://orcid.org/0000-0001-5767-3546</orcidid><orcidid>https://orcid.org/0000-0002-0203-5587</orcidid></search><sort><creationdate>20221001</creationdate><title>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</title><author>Minerva, Dhisa ; Othman, Nuha Loling ; Nakazawa, Takashi ; Ito, Yukinobu ; Yoshida, Makoto ; Goto, Akiteru ; Suzuki, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>arterial patch</topic><topic>Blood vessels</topic><topic>cell driving force</topic><topic>Chemotaxis</topic><topic>Concentration gradient</topic><topic>Fistula</topic><topic>Growth factors</topic><topic>hybrid simulation</topic><topic>Mathematical models</topic><topic>Motility</topic><topic>Partial differential equations</topic><topic>Permeability</topic><topic>Rabbits</topic><topic>Simulation</topic><topic>Vascular endothelial growth factor</topic><topic>VEGF</topic><topic>Veins &amp; arteries</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minerva, Dhisa</creatorcontrib><creatorcontrib>Othman, Nuha Loling</creatorcontrib><creatorcontrib>Nakazawa, Takashi</creatorcontrib><creatorcontrib>Ito, Yukinobu</creatorcontrib><creatorcontrib>Yoshida, Makoto</creatorcontrib><creatorcontrib>Goto, Akiteru</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minerva, Dhisa</au><au>Othman, Nuha Loling</au><au>Nakazawa, Takashi</au><au>Ito, Yukinobu</au><au>Yoshida, Makoto</au><au>Goto, Akiteru</au><au>Suzuki, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>19</issue><spage>11208</spage><pages>11208-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36232507</pmid><doi>10.3390/ijms231911208</doi><orcidid>https://orcid.org/0000-0001-8776-9004</orcidid><orcidid>https://orcid.org/0000-0002-5889-812X</orcidid><orcidid>https://orcid.org/0000-0002-1774-1169</orcidid><orcidid>https://orcid.org/0000-0001-5767-3546</orcidid><orcidid>https://orcid.org/0000-0002-0203-5587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-10, Vol.23 (19), p.11208
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4b7f313785d44ee1b64d93994366fd35
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Angiogenesis
arterial patch
Blood vessels
cell driving force
Chemotaxis
Concentration gradient
Fistula
Growth factors
hybrid simulation
Mathematical models
Motility
Partial differential equations
Permeability
Rabbits
Simulation
Vascular endothelial growth factor
VEGF
Veins & arteries
Velocity
title A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Chemotactic%20Mechanism%20Governs%20Long-Range%20Angiogenesis%20Induced%20by%20Patching%20an%20Arterial%20Graft%20into%20a%20Vein&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Minerva,%20Dhisa&rft.date=2022-10-01&rft.volume=23&rft.issue=19&rft.spage=11208&rft.pages=11208-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms231911208&rft_dat=%3Cproquest_doaj_%3E2725199658%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-73e2eb731be0e2dc85c8c569f0b26971cdc1e1e3bdbc9d3d124d1fd387f43f2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724284615&rft_id=info:pmid/36232507&rfr_iscdi=true