Loading…

Optimising Sample Preparation and Calibrations in EDXRF for Quantitative Soil Analysis

Energy-dispersive X-ray fluorescence spectrometry (EDXRF) is a rapid and inexpensive method for soil analysis; however, analytical results are influenced by particle size effects and spectral interferences. The objective of this study was to optimise sample preparation and calibrations to improve th...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2020-09, Vol.10 (9), p.1309
Main Authors: Croffie, Maame E. T., Williams, Paul N., Fenton, Owen, Fenelon, Anna, Metzger, Konrad, Daly, Karen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Energy-dispersive X-ray fluorescence spectrometry (EDXRF) is a rapid and inexpensive method for soil analysis; however, analytical results are influenced by particle size effects and spectral interferences. The objective of this study was to optimise sample preparation and calibrations to improve the accuracy of EDXRF for soil tests. Methods of sample preparation were compared by calculating the recoveries of 13 elements in four International Soil-Analytical Exchange (ISE) standards prepared as loose powder (LP), pressed pellet (PP), and pressed pellet with wax binder (PPB). A matching library (ML) was created and evaluated against the fundamental parameters (FP) calibration using 20 ISE standards. Additionally, EDXRF results of 41 tillage soils were compared with Inductively coupled plasma optical emission spectrometry (ICP-OES) results. The PPB had most recoveries within the acceptable range of 80–120%; conversely, PP yielded the poorest element recoveries. For the calibration, the ML provided better recoveries of Ni, Pb, Cu, Mg, S, P, and Cr; however, for Zn, and Mn, it had the opposite effect. Furthermore, EDXRF results compared with ICP-OES separated by soil texture class for Al, K, Mn, and Fe. In conclusion, the EDXRF is suitable for quantifying both trace elements and macronutrients in contaminated soils and has the potential to provide screening or prediction of soil texture in agriculture.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy10091309