Loading…

Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method

This study includes work related to the analysis of satellite telemetry data. Prior to that, the focus is on investigating various ways of finding anomalies in telemetry data. Both traditional statistical approaches, such as outlier analysis and process control, and modern machine learning technique...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2024, Vol.583, p.4011
Main Authors: Aleshko, Roman, Sakhnik, Arseniy, Vasiliev, Anton, Berezovsky, Vladimir, Shoshina, Ksenia
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1571-45d7a878f4f61692ba481124cd7b28fd63f823a9e01d61147ee97941a934491c3
container_end_page
container_issue
container_start_page 4011
container_title E3S web of conferences
container_volume 583
creator Aleshko, Roman
Sakhnik, Arseniy
Vasiliev, Anton
Berezovsky, Vladimir
Shoshina, Ksenia
description This study includes work related to the analysis of satellite telemetry data. Prior to that, the focus is on investigating various ways of finding anomalies in telemetry data. Both traditional statistical approaches, such as outlier analysis and process control, and modern machine learning techniques, such as deep learning algorithms and anomaly detection techniques, are covered in this. It is seeking to decide on a machine learning model that can identify anomalies in telemetry data. This requires the analysis of several machine learning algorithms, their comparison, and evaluation using a small spacecraft telemetry dataset. This work needs to identify the most suitable and effective methods for detecting anomalies in satellite telemetry data.
doi_str_mv 10.1051/e3sconf/202458304011
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bad8f98d90645ccb6989cfcf50ff039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4bad8f98d90645ccb6989cfcf50ff039</doaj_id><sourcerecordid>oai_doaj_org_article_4bad8f98d90645ccb6989cfcf50ff039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1571-45d7a878f4f61692ba481124cd7b28fd63f823a9e01d61147ee97941a934491c3</originalsourceid><addsrcrecordid>eNpNkc1qwzAQhE1poSHNG_SgF3CjlWVbOpb0LxDopT2btbRKHGwrSG7Ab1-nCSWnXXZ2PhgmSR6BPwHPYUlZNL53S8GFzFXGJQe4SWZCFGUKQorbq_0-WcS455yDyJXkcpYcX-hIrT901A_MO4aso2HnrW_9dmTOB9bYSWrc2PRbhr3vsG0osqZnA7U0PYeRWRzwZI6T2LJ4QEMmoBvYTzy5hh0x6iN1dUsX_ENy57CNtLjMefL99vq1-kg3n-_r1fMmNZCXkMrclqhK5aQroNCiRqlgCmJsWQvlbJE5JTLUxMEWALIk0qWWgDqTUoPJ5sn6zLUe99UhNB2GsfLYVH8HH7YVhqExLVWyRqucVlbzQubG1IVW2jjjcu4cz_TEkmeWCT7GQO6fB7w6VVFdqqiuq8h-AXoIfz4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method</title><source>Publicly Available Content (ProQuest)</source><creator>Aleshko, Roman ; Sakhnik, Arseniy ; Vasiliev, Anton ; Berezovsky, Vladimir ; Shoshina, Ksenia</creator><contributor>Altybaev, A.N. ; Petkovich, M. ; Rudoy, D. ; Miletic, N.</contributor><creatorcontrib>Aleshko, Roman ; Sakhnik, Arseniy ; Vasiliev, Anton ; Berezovsky, Vladimir ; Shoshina, Ksenia ; Altybaev, A.N. ; Petkovich, M. ; Rudoy, D. ; Miletic, N.</creatorcontrib><description>This study includes work related to the analysis of satellite telemetry data. Prior to that, the focus is on investigating various ways of finding anomalies in telemetry data. Both traditional statistical approaches, such as outlier analysis and process control, and modern machine learning techniques, such as deep learning algorithms and anomaly detection techniques, are covered in this. It is seeking to decide on a machine learning model that can identify anomalies in telemetry data. This requires the analysis of several machine learning algorithms, their comparison, and evaluation using a small spacecraft telemetry dataset. This work needs to identify the most suitable and effective methods for detecting anomalies in satellite telemetry data.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202458304011</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024, Vol.583, p.4011</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1571-45d7a878f4f61692ba481124cd7b28fd63f823a9e01d61147ee97941a934491c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Altybaev, A.N.</contributor><contributor>Petkovich, M.</contributor><contributor>Rudoy, D.</contributor><contributor>Miletic, N.</contributor><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Sakhnik, Arseniy</creatorcontrib><creatorcontrib>Vasiliev, Anton</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><creatorcontrib>Shoshina, Ksenia</creatorcontrib><title>Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method</title><title>E3S web of conferences</title><description>This study includes work related to the analysis of satellite telemetry data. Prior to that, the focus is on investigating various ways of finding anomalies in telemetry data. Both traditional statistical approaches, such as outlier analysis and process control, and modern machine learning techniques, such as deep learning algorithms and anomaly detection techniques, are covered in this. It is seeking to decide on a machine learning model that can identify anomalies in telemetry data. This requires the analysis of several machine learning algorithms, their comparison, and evaluation using a small spacecraft telemetry dataset. This work needs to identify the most suitable and effective methods for detecting anomalies in satellite telemetry data.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc1qwzAQhE1poSHNG_SgF3CjlWVbOpb0LxDopT2btbRKHGwrSG7Ab1-nCSWnXXZ2PhgmSR6BPwHPYUlZNL53S8GFzFXGJQe4SWZCFGUKQorbq_0-WcS455yDyJXkcpYcX-hIrT901A_MO4aso2HnrW_9dmTOB9bYSWrc2PRbhr3vsG0osqZnA7U0PYeRWRzwZI6T2LJ4QEMmoBvYTzy5hh0x6iN1dUsX_ENy57CNtLjMefL99vq1-kg3n-_r1fMmNZCXkMrclqhK5aQroNCiRqlgCmJsWQvlbJE5JTLUxMEWALIk0qWWgDqTUoPJ5sn6zLUe99UhNB2GsfLYVH8HH7YVhqExLVWyRqucVlbzQubG1IVW2jjjcu4cz_TEkmeWCT7GQO6fB7w6VVFdqqiuq8h-AXoIfz4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aleshko, Roman</creator><creator>Sakhnik, Arseniy</creator><creator>Vasiliev, Anton</creator><creator>Berezovsky, Vladimir</creator><creator>Shoshina, Ksenia</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method</title><author>Aleshko, Roman ; Sakhnik, Arseniy ; Vasiliev, Anton ; Berezovsky, Vladimir ; Shoshina, Ksenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1571-45d7a878f4f61692ba481124cd7b28fd63f823a9e01d61147ee97941a934491c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Sakhnik, Arseniy</creatorcontrib><creatorcontrib>Vasiliev, Anton</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><creatorcontrib>Shoshina, Ksenia</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleshko, Roman</au><au>Sakhnik, Arseniy</au><au>Vasiliev, Anton</au><au>Berezovsky, Vladimir</au><au>Shoshina, Ksenia</au><au>Altybaev, A.N.</au><au>Petkovich, M.</au><au>Rudoy, D.</au><au>Miletic, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method</atitle><jtitle>E3S web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>583</volume><spage>4011</spage><pages>4011-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>This study includes work related to the analysis of satellite telemetry data. Prior to that, the focus is on investigating various ways of finding anomalies in telemetry data. Both traditional statistical approaches, such as outlier analysis and process control, and modern machine learning techniques, such as deep learning algorithms and anomaly detection techniques, are covered in this. It is seeking to decide on a machine learning model that can identify anomalies in telemetry data. This requires the analysis of several machine learning algorithms, their comparison, and evaluation using a small spacecraft telemetry dataset. This work needs to identify the most suitable and effective methods for detecting anomalies in satellite telemetry data.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202458304011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2024, Vol.583, p.4011
issn 2267-1242
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4bad8f98d90645ccb6989cfcf50ff039
source Publicly Available Content (ProQuest)
title Development of a methodology for identifying anomalies in telemetry data of small spacecraft using the ensemble method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20methodology%20for%20identifying%20anomalies%20in%20telemetry%20data%20of%20small%20spacecraft%20using%20the%20ensemble%20method&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Aleshko,%20Roman&rft.date=2024&rft.volume=583&rft.spage=4011&rft.pages=4011-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202458304011&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_4bad8f98d90645ccb6989cfcf50ff039%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1571-45d7a878f4f61692ba481124cd7b28fd63f823a9e01d61147ee97941a934491c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true