Loading…
Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole...
Saved in:
Published in: | BMC psychiatry 2020-02, Vol.20 (1), p.92-11, Article 92 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 92 |
container_title | BMC psychiatry |
container_volume | 20 |
creator | Sardaar, Sameer Qi, Bill Dionne-Laporte, Alexandre Rouleau, Guy A Rabbany, Reihaneh Trakadis, Yannis J |
description | Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML.
In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes).
In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ.
Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ. |
doi_str_mv | 10.1186/s12888-020-02503-5 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616428101</galeid><doaj_id>oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d</doaj_id><sourcerecordid>A616428101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</originalsourceid><addsrcrecordid>eNptkk1vFSEUhidGY2v1D7gwJG7cTOVrhmFj0jR-NKlxo4k7AszhXm5moALTWH-9TG-tvUYIgcB7HjiHt2leEnxKyNC_zYQOw9BiiuvoMGu7R80x4YK0lPPvjx-sj5pnOe8wJmLoyNPmiFFS29AdN_6ztlsfAE2gU_Bhg3TQ0032GUWH4GecAZXkY0YlIhtDSToXVLaANhDi7C3SqQIK2LIkWGP0UnyeK2ZEuZ78ilfbBMHr580Tp6cML-7mk-bbh_dfzz-1l18-XpyfXba261lph5GPvJM9JtZ09Z1cUzMaN0oBhIMV0OuBGiaMc0IQEMZQh7F2xBnBeNexk-Zizx2j3qmr5GedblTUXt1uxLRROhVvJ1Dc6BEohgp03EgpNe0ZBccto8x0Y2W927OuFjPDaGHNfzqAHp4Ev1WbeK0E5pJIWQFv7gAp_lggFzX7bGGadIC4ZEVZLznuKcFV-vof6S4uqX7GqhKSYi6w_Kva6JqADy7We-0KVWc96TkdCCZVdfofVe0j1C-LAZyv-wcBdB9gU8w5gbvPkWC1mk3tzaaq2dSt2dRa6VcPq3Mf8sdd7DeemNCP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379204709</pqid></control><display><type>article</type><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</creator><creatorcontrib>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</creatorcontrib><description>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML.
In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes).
In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ.
Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</description><identifier>ISSN: 1471-244X</identifier><identifier>EISSN: 1471-244X</identifier><identifier>DOI: 10.1186/s12888-020-02503-5</identifier><identifier>PMID: 32111185</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Autism ; Autism spectrum disorder ; Autism Spectrum Disorder - genetics ; Autistic Disorder - genetics ; Big Data ; Exome - genetics ; Exome Sequencing ; Genetic aspects ; Genetic research ; Genomes ; Genomic ; Genomics ; Humans ; Learning algorithms ; Machine Learning ; Mental disorders ; Psychiatry ; Schizophrenia ; Schizophrenia - genetics ; Unsupervised clustering</subject><ispartof>BMC psychiatry, 2020-02, Vol.20 (1), p.92-11, Article 92</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</citedby><cites>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</cites><orcidid>0000-0001-6113-473X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049199/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2379204709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sardaar, Sameer</creatorcontrib><creatorcontrib>Qi, Bill</creatorcontrib><creatorcontrib>Dionne-Laporte, Alexandre</creatorcontrib><creatorcontrib>Rouleau, Guy A</creatorcontrib><creatorcontrib>Rabbany, Reihaneh</creatorcontrib><creatorcontrib>Trakadis, Yannis J</creatorcontrib><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><title>BMC psychiatry</title><addtitle>BMC Psychiatry</addtitle><description>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML.
In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes).
In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ.
Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Autism</subject><subject>Autism spectrum disorder</subject><subject>Autism Spectrum Disorder - genetics</subject><subject>Autistic Disorder - genetics</subject><subject>Big Data</subject><subject>Exome - genetics</subject><subject>Exome Sequencing</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomic</subject><subject>Genomics</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Psychiatry</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Unsupervised clustering</subject><issn>1471-244X</issn><issn>1471-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vFSEUhidGY2v1D7gwJG7cTOVrhmFj0jR-NKlxo4k7AszhXm5moALTWH-9TG-tvUYIgcB7HjiHt2leEnxKyNC_zYQOw9BiiuvoMGu7R80x4YK0lPPvjx-sj5pnOe8wJmLoyNPmiFFS29AdN_6ztlsfAE2gU_Bhg3TQ0032GUWH4GecAZXkY0YlIhtDSToXVLaANhDi7C3SqQIK2LIkWGP0UnyeK2ZEuZ78ilfbBMHr580Tp6cML-7mk-bbh_dfzz-1l18-XpyfXba261lph5GPvJM9JtZ09Z1cUzMaN0oBhIMV0OuBGiaMc0IQEMZQh7F2xBnBeNexk-Zizx2j3qmr5GedblTUXt1uxLRROhVvJ1Dc6BEohgp03EgpNe0ZBccto8x0Y2W927OuFjPDaGHNfzqAHp4Ev1WbeK0E5pJIWQFv7gAp_lggFzX7bGGadIC4ZEVZLznuKcFV-vof6S4uqX7GqhKSYi6w_Kva6JqADy7We-0KVWc96TkdCCZVdfofVe0j1C-LAZyv-wcBdB9gU8w5gbvPkWC1mk3tzaaq2dSt2dRa6VcPq3Mf8sdd7DeemNCP</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Sardaar, Sameer</creator><creator>Qi, Bill</creator><creator>Dionne-Laporte, Alexandre</creator><creator>Rouleau, Guy A</creator><creator>Rabbany, Reihaneh</creator><creator>Trakadis, Yannis J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6113-473X</orcidid></search><sort><creationdate>20200228</creationdate><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><author>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Autism</topic><topic>Autism spectrum disorder</topic><topic>Autism Spectrum Disorder - genetics</topic><topic>Autistic Disorder - genetics</topic><topic>Big Data</topic><topic>Exome - genetics</topic><topic>Exome Sequencing</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomic</topic><topic>Genomics</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Psychiatry</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Unsupervised clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sardaar, Sameer</creatorcontrib><creatorcontrib>Qi, Bill</creatorcontrib><creatorcontrib>Dionne-Laporte, Alexandre</creatorcontrib><creatorcontrib>Rouleau, Guy A</creatorcontrib><creatorcontrib>Rabbany, Reihaneh</creatorcontrib><creatorcontrib>Trakadis, Yannis J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sardaar, Sameer</au><au>Qi, Bill</au><au>Dionne-Laporte, Alexandre</au><au>Rouleau, Guy A</au><au>Rabbany, Reihaneh</au><au>Trakadis, Yannis J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</atitle><jtitle>BMC psychiatry</jtitle><addtitle>BMC Psychiatry</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>92</spage><epage>11</epage><pages>92-11</pages><artnum>92</artnum><issn>1471-244X</issn><eissn>1471-244X</eissn><abstract>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML.
In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes).
In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ.
Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32111185</pmid><doi>10.1186/s12888-020-02503-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6113-473X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-244X |
ispartof | BMC psychiatry, 2020-02, Vol.20 (1), p.92-11, Article 92 |
issn | 1471-244X 1471-244X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Algorithms Analysis Autism Autism spectrum disorder Autism Spectrum Disorder - genetics Autistic Disorder - genetics Big Data Exome - genetics Exome Sequencing Genetic aspects Genetic research Genomes Genomic Genomics Humans Learning algorithms Machine Learning Mental disorders Psychiatry Schizophrenia Schizophrenia - genetics Unsupervised clustering |
title | Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20analysis%20of%20exome%20trios%20to%20contrast%20the%20genomic%20architecture%20of%20autism%20and%20schizophrenia&rft.jtitle=BMC%20psychiatry&rft.au=Sardaar,%20Sameer&rft.date=2020-02-28&rft.volume=20&rft.issue=1&rft.spage=92&rft.epage=11&rft.pages=92-11&rft.artnum=92&rft.issn=1471-244X&rft.eissn=1471-244X&rft_id=info:doi/10.1186/s12888-020-02503-5&rft_dat=%3Cgale_doaj_%3EA616428101%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379204709&rft_id=info:pmid/32111185&rft_galeid=A616428101&rfr_iscdi=true |