Loading…

Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia

Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole...

Full description

Saved in:
Bibliographic Details
Published in:BMC psychiatry 2020-02, Vol.20 (1), p.92-11, Article 92
Main Authors: Sardaar, Sameer, Qi, Bill, Dionne-Laporte, Alexandre, Rouleau, Guy A, Rabbany, Reihaneh, Trakadis, Yannis J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553
cites cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553
container_end_page 11
container_issue 1
container_start_page 92
container_title BMC psychiatry
container_volume 20
creator Sardaar, Sameer
Qi, Bill
Dionne-Laporte, Alexandre
Rouleau, Guy A
Rabbany, Reihaneh
Trakadis, Yannis J
description Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.
doi_str_mv 10.1186/s12888-020-02503-5
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616428101</galeid><doaj_id>oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d</doaj_id><sourcerecordid>A616428101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</originalsourceid><addsrcrecordid>eNptkk1vFSEUhidGY2v1D7gwJG7cTOVrhmFj0jR-NKlxo4k7AszhXm5moALTWH-9TG-tvUYIgcB7HjiHt2leEnxKyNC_zYQOw9BiiuvoMGu7R80x4YK0lPPvjx-sj5pnOe8wJmLoyNPmiFFS29AdN_6ztlsfAE2gU_Bhg3TQ0032GUWH4GecAZXkY0YlIhtDSToXVLaANhDi7C3SqQIK2LIkWGP0UnyeK2ZEuZ78ilfbBMHr580Tp6cML-7mk-bbh_dfzz-1l18-XpyfXba261lph5GPvJM9JtZ09Z1cUzMaN0oBhIMV0OuBGiaMc0IQEMZQh7F2xBnBeNexk-Zizx2j3qmr5GedblTUXt1uxLRROhVvJ1Dc6BEohgp03EgpNe0ZBccto8x0Y2W927OuFjPDaGHNfzqAHp4Ev1WbeK0E5pJIWQFv7gAp_lggFzX7bGGadIC4ZEVZLznuKcFV-vof6S4uqX7GqhKSYi6w_Kva6JqADy7We-0KVWc96TkdCCZVdfofVe0j1C-LAZyv-wcBdB9gU8w5gbvPkWC1mk3tzaaq2dSt2dRa6VcPq3Mf8sdd7DeemNCP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379204709</pqid></control><display><type>article</type><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</creator><creatorcontrib>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</creatorcontrib><description>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</description><identifier>ISSN: 1471-244X</identifier><identifier>EISSN: 1471-244X</identifier><identifier>DOI: 10.1186/s12888-020-02503-5</identifier><identifier>PMID: 32111185</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Autism ; Autism spectrum disorder ; Autism Spectrum Disorder - genetics ; Autistic Disorder - genetics ; Big Data ; Exome - genetics ; Exome Sequencing ; Genetic aspects ; Genetic research ; Genomes ; Genomic ; Genomics ; Humans ; Learning algorithms ; Machine Learning ; Mental disorders ; Psychiatry ; Schizophrenia ; Schizophrenia - genetics ; Unsupervised clustering</subject><ispartof>BMC psychiatry, 2020-02, Vol.20 (1), p.92-11, Article 92</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</citedby><cites>FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</cites><orcidid>0000-0001-6113-473X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049199/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2379204709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32111185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sardaar, Sameer</creatorcontrib><creatorcontrib>Qi, Bill</creatorcontrib><creatorcontrib>Dionne-Laporte, Alexandre</creatorcontrib><creatorcontrib>Rouleau, Guy A</creatorcontrib><creatorcontrib>Rabbany, Reihaneh</creatorcontrib><creatorcontrib>Trakadis, Yannis J</creatorcontrib><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><title>BMC psychiatry</title><addtitle>BMC Psychiatry</addtitle><description>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Autism</subject><subject>Autism spectrum disorder</subject><subject>Autism Spectrum Disorder - genetics</subject><subject>Autistic Disorder - genetics</subject><subject>Big Data</subject><subject>Exome - genetics</subject><subject>Exome Sequencing</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomic</subject><subject>Genomics</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Psychiatry</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Unsupervised clustering</subject><issn>1471-244X</issn><issn>1471-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vFSEUhidGY2v1D7gwJG7cTOVrhmFj0jR-NKlxo4k7AszhXm5moALTWH-9TG-tvUYIgcB7HjiHt2leEnxKyNC_zYQOw9BiiuvoMGu7R80x4YK0lPPvjx-sj5pnOe8wJmLoyNPmiFFS29AdN_6ztlsfAE2gU_Bhg3TQ0032GUWH4GecAZXkY0YlIhtDSToXVLaANhDi7C3SqQIK2LIkWGP0UnyeK2ZEuZ78ilfbBMHr580Tp6cML-7mk-bbh_dfzz-1l18-XpyfXba261lph5GPvJM9JtZ09Z1cUzMaN0oBhIMV0OuBGiaMc0IQEMZQh7F2xBnBeNexk-Zizx2j3qmr5GedblTUXt1uxLRROhVvJ1Dc6BEohgp03EgpNe0ZBccto8x0Y2W927OuFjPDaGHNfzqAHp4Ev1WbeK0E5pJIWQFv7gAp_lggFzX7bGGadIC4ZEVZLznuKcFV-vof6S4uqX7GqhKSYi6w_Kva6JqADy7We-0KVWc96TkdCCZVdfofVe0j1C-LAZyv-wcBdB9gU8w5gbvPkWC1mk3tzaaq2dSt2dRa6VcPq3Mf8sdd7DeemNCP</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Sardaar, Sameer</creator><creator>Qi, Bill</creator><creator>Dionne-Laporte, Alexandre</creator><creator>Rouleau, Guy A</creator><creator>Rabbany, Reihaneh</creator><creator>Trakadis, Yannis J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6113-473X</orcidid></search><sort><creationdate>20200228</creationdate><title>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</title><author>Sardaar, Sameer ; Qi, Bill ; Dionne-Laporte, Alexandre ; Rouleau, Guy A ; Rabbany, Reihaneh ; Trakadis, Yannis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Autism</topic><topic>Autism spectrum disorder</topic><topic>Autism Spectrum Disorder - genetics</topic><topic>Autistic Disorder - genetics</topic><topic>Big Data</topic><topic>Exome - genetics</topic><topic>Exome Sequencing</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomic</topic><topic>Genomics</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Psychiatry</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Unsupervised clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sardaar, Sameer</creatorcontrib><creatorcontrib>Qi, Bill</creatorcontrib><creatorcontrib>Dionne-Laporte, Alexandre</creatorcontrib><creatorcontrib>Rouleau, Guy A</creatorcontrib><creatorcontrib>Rabbany, Reihaneh</creatorcontrib><creatorcontrib>Trakadis, Yannis J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sardaar, Sameer</au><au>Qi, Bill</au><au>Dionne-Laporte, Alexandre</au><au>Rouleau, Guy A</au><au>Rabbany, Reihaneh</au><au>Trakadis, Yannis J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia</atitle><jtitle>BMC psychiatry</jtitle><addtitle>BMC Psychiatry</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>92</spage><epage>11</epage><pages>92-11</pages><artnum>92</artnum><issn>1471-244X</issn><eissn>1471-244X</eissn><abstract>Machine learning (ML) algorithms and methods offer great tools to analyze large complex genomic datasets. Our goal was to compare the genomic architecture of schizophrenia (SCZ) and autism spectrum disorder (ASD) using ML. In this paper, we used regularized gradient boosted machines to analyze whole-exome sequencing (WES) data from individuals SCZ and ASD in order to identify important distinguishing genetic features. We further demonstrated a method of gene clustering to highlight which subsets of genes identified by the ML algorithm are mutated concurrently in affected individuals and are central to each disease (i.e., ASD vs. SCZ "hub" genes). In summary, after correcting for population structure, we found that SCZ and ASD cases could be successfully separated based on genetic information, with 86-88% accuracy on the testing dataset. Through bioinformatic analysis, we explored if combinations of genes concurrently mutated in patients with the same condition ("hub" genes) belong to specific pathways. Several themes were found to be associated with ASD, including calcium ion transmembrane transport, immune system/inflammation, synapse organization, and retinoid metabolic process. Moreover, ion transmembrane transport, neurotransmitter transport, and microtubule/cytoskeleton processes were highlighted for SCZ. Our manuscript introduces a novel comparative approach for studying the genetic architecture of genetically related diseases with complex inheritance and highlights genetic similarities and differences between ASD and SCZ.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32111185</pmid><doi>10.1186/s12888-020-02503-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6113-473X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-244X
ispartof BMC psychiatry, 2020-02, Vol.20 (1), p.92-11, Article 92
issn 1471-244X
1471-244X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4bade20e82bf4b999a2632ef4c323b5d
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Analysis
Autism
Autism spectrum disorder
Autism Spectrum Disorder - genetics
Autistic Disorder - genetics
Big Data
Exome - genetics
Exome Sequencing
Genetic aspects
Genetic research
Genomes
Genomic
Genomics
Humans
Learning algorithms
Machine Learning
Mental disorders
Psychiatry
Schizophrenia
Schizophrenia - genetics
Unsupervised clustering
title Machine learning analysis of exome trios to contrast the genomic architecture of autism and schizophrenia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20analysis%20of%20exome%20trios%20to%20contrast%20the%20genomic%20architecture%20of%20autism%20and%20schizophrenia&rft.jtitle=BMC%20psychiatry&rft.au=Sardaar,%20Sameer&rft.date=2020-02-28&rft.volume=20&rft.issue=1&rft.spage=92&rft.epage=11&rft.pages=92-11&rft.artnum=92&rft.issn=1471-244X&rft.eissn=1471-244X&rft_id=info:doi/10.1186/s12888-020-02503-5&rft_dat=%3Cgale_doaj_%3EA616428101%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-8d4d459601cb53214a2bdbfd97e14ec7e6a82b37bff771e7bb2f00af1fb734553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2379204709&rft_id=info:pmid/32111185&rft_galeid=A616428101&rfr_iscdi=true