Loading…

A microscopic model of black hole evaporation in two dimensions

A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of coup...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2023-08, Vol.2023 (8), p.171-68, Article 171
Main Authors: Gaikwad, Adwait, Kaushal, Anurag, Mandal, Gautam, Wadia, Spenta R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53
container_end_page 68
container_issue 8
container_start_page 171
container_title The journal of high energy physics
container_volume 2023
creator Gaikwad, Adwait
Kaushal, Anurag
Mandal, Gautam
Wadia, Spenta R.
description A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of couplings of the form O SY K ( t )∑ i Φ i (0,  t ), where O SY K involves products of the Kourkoulou-Maldacena operator iJ / N ∑ k = 1 N / 2 s k ′ ψ 2 k − 1 t ψ 2 k t specified by a spin vector s ′ . We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector s and an effective BH temperature T BH , and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature T bath . We take T bath ≪ T BH , and T BH much lower than the characteristic UV scale J of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large N behaviour of the time reparameterization mode is found, as well as the O 1 / N fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors s.s ′ , which carries some information about the initial state. By repeating the dynamical process O ( N 2 ) times with different choices of the spin vector s ′ , one can in principle reconstruct the initial BH microstate.
doi_str_mv 10.1007/JHEP08(2023)171
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8</doaj_id><sourcerecordid>2857166277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRiMEEqUws1pigSFwtpPYnlBVFVpUCQaYLcexS0oaBzsF8e9xCQIWJp9O3_d8eklyiuESA7Cru_nsAfg5AUIvMMN7yQgDESnPmNj_Mx8mRyGsAXCOBYyS6wna1Nq7oF1Xa7RxlWmQs6hslH5Bz64xyLypznnV165FdYv6d4eqemPaEBfhODmwqgnm5PsdJ083s8fpPF3e3y6mk2WqKcN9ShTNjahskTFVEcapFlCBAVKoTIHV1JYl0wA2zpXgjBOBeYEp45kAU-Z0nCwGbuXUWna-3ij_IZ2q5dfC-ZVUvq91Y2RWlnmZaUIJiMyqyOE8N5TmhNKysDyyzgZW593r1oRert3Wt_F8SXjOcFEQxmLqakjt7ARv7M-vGOTOuByMy51xGY3HBgyNEJPtyvhf7n-VT4RKgKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857166277</pqid></control><display><type>article</type><title>A microscopic model of black hole evaporation in two dimensions</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</creator><creatorcontrib>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</creatorcontrib><description>A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of couplings of the form O SY K ( t )∑ i Φ i (0,  t ), where O SY K involves products of the Kourkoulou-Maldacena operator iJ / N ∑ k = 1 N / 2 s k ′ ψ 2 k − 1 t ψ 2 k t specified by a spin vector s ′ . We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector s and an effective BH temperature T BH , and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature T bath . We take T bath ≪ T BH , and T BH much lower than the characteristic UV scale J of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large N behaviour of the time reparameterization mode is found, as well as the O 1 / N fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors s.s ′ , which carries some information about the initial state. By repeating the dynamical process O ( N 2 ) times with different choices of the spin vector s ′ , one can in principle reconstruct the initial BH microstate.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2023)171</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>2D Gravity ; AdS-CFT Correspondence ; Asymptotic methods ; Black Holes ; Classical and Quantum Gravitation ; Couplings ; Differential equations ; Elementary Particles ; Energy industry ; Evaporation ; Gravity ; High energy physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Dissipative Systems ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Radiation ; Random noise ; Regular Article - Theoretical Physics ; Relativity Theory ; Scalars ; String Theory</subject><ispartof>The journal of high energy physics, 2023-08, Vol.2023 (8), p.171-68, Article 171</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</cites><orcidid>0000-0002-8065-8931 ; 0000-0002-9028-4451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857166277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857166277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Kaushal, Anurag</creatorcontrib><creatorcontrib>Mandal, Gautam</creatorcontrib><creatorcontrib>Wadia, Spenta R.</creatorcontrib><title>A microscopic model of black hole evaporation in two dimensions</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of couplings of the form O SY K ( t )∑ i Φ i (0,  t ), where O SY K involves products of the Kourkoulou-Maldacena operator iJ / N ∑ k = 1 N / 2 s k ′ ψ 2 k − 1 t ψ 2 k t specified by a spin vector s ′ . We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector s and an effective BH temperature T BH , and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature T bath . We take T bath ≪ T BH , and T BH much lower than the characteristic UV scale J of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large N behaviour of the time reparameterization mode is found, as well as the O 1 / N fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors s.s ′ , which carries some information about the initial state. By repeating the dynamical process O ( N 2 ) times with different choices of the spin vector s ′ , one can in principle reconstruct the initial BH microstate.</description><subject>2D Gravity</subject><subject>AdS-CFT Correspondence</subject><subject>Asymptotic methods</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Differential equations</subject><subject>Elementary Particles</subject><subject>Energy industry</subject><subject>Evaporation</subject><subject>Gravity</subject><subject>High energy physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Dissipative Systems</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Random noise</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDFPwzAQRiMEEqUws1pigSFwtpPYnlBVFVpUCQaYLcexS0oaBzsF8e9xCQIWJp9O3_d8eklyiuESA7Cru_nsAfg5AUIvMMN7yQgDESnPmNj_Mx8mRyGsAXCOBYyS6wna1Nq7oF1Xa7RxlWmQs6hslH5Bz64xyLypznnV165FdYv6d4eqemPaEBfhODmwqgnm5PsdJ083s8fpPF3e3y6mk2WqKcN9ShTNjahskTFVEcapFlCBAVKoTIHV1JYl0wA2zpXgjBOBeYEp45kAU-Z0nCwGbuXUWna-3ij_IZ2q5dfC-ZVUvq91Y2RWlnmZaUIJiMyqyOE8N5TmhNKysDyyzgZW593r1oRert3Wt_F8SXjOcFEQxmLqakjt7ARv7M-vGOTOuByMy51xGY3HBgyNEJPtyvhf7n-VT4RKgKA</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Gaikwad, Adwait</creator><creator>Kaushal, Anurag</creator><creator>Mandal, Gautam</creator><creator>Wadia, Spenta R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8065-8931</orcidid><orcidid>https://orcid.org/0000-0002-9028-4451</orcidid></search><sort><creationdate>20230825</creationdate><title>A microscopic model of black hole evaporation in two dimensions</title><author>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D Gravity</topic><topic>AdS-CFT Correspondence</topic><topic>Asymptotic methods</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Differential equations</topic><topic>Elementary Particles</topic><topic>Energy industry</topic><topic>Evaporation</topic><topic>Gravity</topic><topic>High energy physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Dissipative Systems</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Random noise</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Kaushal, Anurag</creatorcontrib><creatorcontrib>Mandal, Gautam</creatorcontrib><creatorcontrib>Wadia, Spenta R.</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Adwait</au><au>Kaushal, Anurag</au><au>Mandal, Gautam</au><au>Wadia, Spenta R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microscopic model of black hole evaporation in two dimensions</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-08-25</date><risdate>2023</risdate><volume>2023</volume><issue>8</issue><spage>171</spage><epage>68</epage><pages>171-68</pages><artnum>171</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of couplings of the form O SY K ( t )∑ i Φ i (0,  t ), where O SY K involves products of the Kourkoulou-Maldacena operator iJ / N ∑ k = 1 N / 2 s k ′ ψ 2 k − 1 t ψ 2 k t specified by a spin vector s ′ . We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector s and an effective BH temperature T BH , and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature T bath . We take T bath ≪ T BH , and T BH much lower than the characteristic UV scale J of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large N behaviour of the time reparameterization mode is found, as well as the O 1 / N fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors s.s ′ , which carries some information about the initial state. By repeating the dynamical process O ( N 2 ) times with different choices of the spin vector s ′ , one can in principle reconstruct the initial BH microstate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2023)171</doi><tpages>68</tpages><orcidid>https://orcid.org/0000-0002-8065-8931</orcidid><orcidid>https://orcid.org/0000-0002-9028-4451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-08, Vol.2023 (8), p.171-68, Article 171
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8
source Springer Nature - SpringerLink Journals - Fully Open Access; ProQuest - Publicly Available Content Database
subjects 2D Gravity
AdS-CFT Correspondence
Asymptotic methods
Black Holes
Classical and Quantum Gravitation
Couplings
Differential equations
Elementary Particles
Energy industry
Evaporation
Gravity
High energy physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Dissipative Systems
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Radiation
Random noise
Regular Article - Theoretical Physics
Relativity Theory
Scalars
String Theory
title A microscopic model of black hole evaporation in two dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microscopic%20model%20of%20black%20hole%20evaporation%20in%20two%20dimensions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gaikwad,%20Adwait&rft.date=2023-08-25&rft.volume=2023&rft.issue=8&rft.spage=171&rft.epage=68&rft.pages=171-68&rft.artnum=171&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2023)171&rft_dat=%3Cproquest_doaj_%3E2857166277%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857166277&rft_id=info:pmid/&rfr_iscdi=true