Loading…
A microscopic model of black hole evaporation in two dimensions
A bstract We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically AdS 2 spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of N f free scalar fields Φ i . We consider a linear combination of coup...
Saved in:
Published in: | The journal of high energy physics 2023-08, Vol.2023 (8), p.171-68, Article 171 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53 |
container_end_page | 68 |
container_issue | 8 |
container_start_page | 171 |
container_title | The journal of high energy physics |
container_volume | 2023 |
creator | Gaikwad, Adwait Kaushal, Anurag Mandal, Gautam Wadia, Spenta R. |
description | A
bstract
We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically
AdS
2
spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of
N
f
free scalar fields Φ
i
. We consider a linear combination of couplings of the form
O
SY K
(
t
)∑
i
Φ
i
(0,
t
), where
O
SY K
involves products of the Kourkoulou-Maldacena operator
iJ
/
N
∑
k
=
1
N
/
2
s
k
′
ψ
2
k
−
1
t
ψ
2
k
t
specified by a spin vector
s
′
. We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector
s
and an effective BH temperature
T
BH
, and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature
T
bath
. We take
T
bath
≪
T
BH
, and
T
BH
much lower than the characteristic UV scale
J
of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large
N
behaviour of the time reparameterization mode is found, as well as the
O
1
/
N
fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors
s.s
′
, which carries some information about the initial state. By repeating the dynamical process
O
(
N
2
) times with different choices of the spin vector
s
′
, one can in principle reconstruct the initial BH microstate. |
doi_str_mv | 10.1007/JHEP08(2023)171 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8</doaj_id><sourcerecordid>2857166277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRiMEEqUws1pigSFwtpPYnlBVFVpUCQaYLcexS0oaBzsF8e9xCQIWJp9O3_d8eklyiuESA7Cru_nsAfg5AUIvMMN7yQgDESnPmNj_Mx8mRyGsAXCOBYyS6wna1Nq7oF1Xa7RxlWmQs6hslH5Bz64xyLypznnV165FdYv6d4eqemPaEBfhODmwqgnm5PsdJ083s8fpPF3e3y6mk2WqKcN9ShTNjahskTFVEcapFlCBAVKoTIHV1JYl0wA2zpXgjBOBeYEp45kAU-Z0nCwGbuXUWna-3ij_IZ2q5dfC-ZVUvq91Y2RWlnmZaUIJiMyqyOE8N5TmhNKysDyyzgZW593r1oRert3Wt_F8SXjOcFEQxmLqakjt7ARv7M-vGOTOuByMy51xGY3HBgyNEJPtyvhf7n-VT4RKgKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857166277</pqid></control><display><type>article</type><title>A microscopic model of black hole evaporation in two dimensions</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</creator><creatorcontrib>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</creatorcontrib><description>A
bstract
We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically
AdS
2
spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of
N
f
free scalar fields Φ
i
. We consider a linear combination of couplings of the form
O
SY K
(
t
)∑
i
Φ
i
(0,
t
), where
O
SY K
involves products of the Kourkoulou-Maldacena operator
iJ
/
N
∑
k
=
1
N
/
2
s
k
′
ψ
2
k
−
1
t
ψ
2
k
t
specified by a spin vector
s
′
. We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector
s
and an effective BH temperature
T
BH
, and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature
T
bath
. We take
T
bath
≪
T
BH
, and
T
BH
much lower than the characteristic UV scale
J
of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large
N
behaviour of the time reparameterization mode is found, as well as the
O
1
/
N
fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors
s.s
′
, which carries some information about the initial state. By repeating the dynamical process
O
(
N
2
) times with different choices of the spin vector
s
′
, one can in principle reconstruct the initial BH microstate.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2023)171</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>2D Gravity ; AdS-CFT Correspondence ; Asymptotic methods ; Black Holes ; Classical and Quantum Gravitation ; Couplings ; Differential equations ; Elementary Particles ; Energy industry ; Evaporation ; Gravity ; High energy physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Dissipative Systems ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Radiation ; Random noise ; Regular Article - Theoretical Physics ; Relativity Theory ; Scalars ; String Theory</subject><ispartof>The journal of high energy physics, 2023-08, Vol.2023 (8), p.171-68, Article 171</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</cites><orcidid>0000-0002-8065-8931 ; 0000-0002-9028-4451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2857166277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2857166277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Kaushal, Anurag</creatorcontrib><creatorcontrib>Mandal, Gautam</creatorcontrib><creatorcontrib>Wadia, Spenta R.</creatorcontrib><title>A microscopic model of black hole evaporation in two dimensions</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically
AdS
2
spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of
N
f
free scalar fields Φ
i
. We consider a linear combination of couplings of the form
O
SY K
(
t
)∑
i
Φ
i
(0,
t
), where
O
SY K
involves products of the Kourkoulou-Maldacena operator
iJ
/
N
∑
k
=
1
N
/
2
s
k
′
ψ
2
k
−
1
t
ψ
2
k
t
specified by a spin vector
s
′
. We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector
s
and an effective BH temperature
T
BH
, and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature
T
bath
. We take
T
bath
≪
T
BH
, and
T
BH
much lower than the characteristic UV scale
J
of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large
N
behaviour of the time reparameterization mode is found, as well as the
O
1
/
N
fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors
s.s
′
, which carries some information about the initial state. By repeating the dynamical process
O
(
N
2
) times with different choices of the spin vector
s
′
, one can in principle reconstruct the initial BH microstate.</description><subject>2D Gravity</subject><subject>AdS-CFT Correspondence</subject><subject>Asymptotic methods</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Differential equations</subject><subject>Elementary Particles</subject><subject>Energy industry</subject><subject>Evaporation</subject><subject>Gravity</subject><subject>High energy physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Dissipative Systems</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Random noise</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Scalars</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDFPwzAQRiMEEqUws1pigSFwtpPYnlBVFVpUCQaYLcexS0oaBzsF8e9xCQIWJp9O3_d8eklyiuESA7Cru_nsAfg5AUIvMMN7yQgDESnPmNj_Mx8mRyGsAXCOBYyS6wna1Nq7oF1Xa7RxlWmQs6hslH5Bz64xyLypznnV165FdYv6d4eqemPaEBfhODmwqgnm5PsdJ083s8fpPF3e3y6mk2WqKcN9ShTNjahskTFVEcapFlCBAVKoTIHV1JYl0wA2zpXgjBOBeYEp45kAU-Z0nCwGbuXUWna-3ij_IZ2q5dfC-ZVUvq91Y2RWlnmZaUIJiMyqyOE8N5TmhNKysDyyzgZW593r1oRert3Wt_F8SXjOcFEQxmLqakjt7ARv7M-vGOTOuByMy51xGY3HBgyNEJPtyvhf7n-VT4RKgKA</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Gaikwad, Adwait</creator><creator>Kaushal, Anurag</creator><creator>Mandal, Gautam</creator><creator>Wadia, Spenta R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8065-8931</orcidid><orcidid>https://orcid.org/0000-0002-9028-4451</orcidid></search><sort><creationdate>20230825</creationdate><title>A microscopic model of black hole evaporation in two dimensions</title><author>Gaikwad, Adwait ; Kaushal, Anurag ; Mandal, Gautam ; Wadia, Spenta R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D Gravity</topic><topic>AdS-CFT Correspondence</topic><topic>Asymptotic methods</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Differential equations</topic><topic>Elementary Particles</topic><topic>Energy industry</topic><topic>Evaporation</topic><topic>Gravity</topic><topic>High energy physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Dissipative Systems</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Random noise</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Scalars</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Kaushal, Anurag</creatorcontrib><creatorcontrib>Mandal, Gautam</creatorcontrib><creatorcontrib>Wadia, Spenta R.</creatorcontrib><collection>SpringerOpen(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Adwait</au><au>Kaushal, Anurag</au><au>Mandal, Gautam</au><au>Wadia, Spenta R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microscopic model of black hole evaporation in two dimensions</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-08-25</date><risdate>2023</risdate><volume>2023</volume><issue>8</issue><spage>171</spage><epage>68</epage><pages>171-68</pages><artnum>171</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We present a microscopic model of black hole (BH) ‘evaporation’ in asymptotically
AdS
2
spacetimes dual to the low energy sector of the SYK model. To describe evaporation, the SYK model is coupled to a bath comprising of
N
f
free scalar fields Φ
i
. We consider a linear combination of couplings of the form
O
SY K
(
t
)∑
i
Φ
i
(0,
t
), where
O
SY K
involves products of the Kourkoulou-Maldacena operator
iJ
/
N
∑
k
=
1
N
/
2
s
k
′
ψ
2
k
−
1
t
ψ
2
k
t
specified by a spin vector
s
′
. We discuss the time evolution of a product of (i) a pure state of the SYK system, namely a BH microstate characterized by a spin vector
s
and an effective BH temperature
T
BH
, and (ii) a Calabrese-Cardy state of the bath characterized by an effective temperature
T
bath
. We take
T
bath
≪
T
BH
, and
T
BH
much lower than the characteristic UV scale
J
of the SYK model, allowing a description in terms of the time reparameterization mode. Tracing over the bath degrees of freedom leads to a Feynman-Vernon type effective action for the SYK model, which we study in the low energy limit. The leading large
N
behaviour of the time reparameterization mode is found, as well as the
O
1
/
N
fluctuations. The latter are characterized by a non-Markovian non-linear stochastic differential equation with non-local Gaussian noise. In a restricted range of couplings, we find two classes of solutions which asymptotically approach (a) a BH at a lower temperature, and (b) a horizonless geometry. We identify these with partial and complete BH evaporation, respectively. Importantly, the asymptotic solution in both cases involves the scalar product of the spin vectors
s.s
′
, which carries some information about the initial state. By repeating the dynamical process
O
(
N
2
) times with different choices of the spin vector
s
′
, one can in principle reconstruct the initial BH microstate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2023)171</doi><tpages>68</tpages><orcidid>https://orcid.org/0000-0002-8065-8931</orcidid><orcidid>https://orcid.org/0000-0002-9028-4451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2023-08, Vol.2023 (8), p.171-68, Article 171 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4bb5b4c232094fa186885e335233b6f8 |
source | Springer Nature - SpringerLink Journals - Fully Open Access; ProQuest - Publicly Available Content Database |
subjects | 2D Gravity AdS-CFT Correspondence Asymptotic methods Black Holes Classical and Quantum Gravitation Couplings Differential equations Elementary Particles Energy industry Evaporation Gravity High energy physics Operators (mathematics) Physics Physics and Astronomy Quantum Dissipative Systems Quantum Field Theories Quantum Field Theory Quantum Physics Radiation Random noise Regular Article - Theoretical Physics Relativity Theory Scalars String Theory |
title | A microscopic model of black hole evaporation in two dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microscopic%20model%20of%20black%20hole%20evaporation%20in%20two%20dimensions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gaikwad,%20Adwait&rft.date=2023-08-25&rft.volume=2023&rft.issue=8&rft.spage=171&rft.epage=68&rft.pages=171-68&rft.artnum=171&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2023)171&rft_dat=%3Cproquest_doaj_%3E2857166277%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-2a35e9df647ad2783c90d0e026a4a0fc3fbb7c00f0fcd9878291861378490eb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2857166277&rft_id=info:pmid/&rfr_iscdi=true |