Loading…
New Type Continuities via Abel Convergence
We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a seq...
Saved in:
Published in: | TheScientificWorld 2014-01, Vol.2014 (2014), p.1-6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163 |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163 |
container_end_page | 6 |
container_issue | 2014 |
container_start_page | 1 |
container_title | TheScientificWorld |
container_volume | 2014 |
creator | Cakalli, Huseyin Albayrak, Mehmet |
description | We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions. |
doi_str_mv | 10.1155/2014/398379 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413711506</galeid><doaj_id>oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973</doaj_id><sourcerecordid>A413711506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</originalsourceid><addsrcrecordid>eNqNks1rFDEUwAdR7Fo9eZcFL1KZNt8fl8KyWC0UvVTwFjLJm22W2WTNzGzpf2-mU0vrSXIIvPzyy8t7r6reY3SKMednBGF2RrWiUr-oFphTWUvGfr2sFoRyUQvM0FH1pu-3CFElMX9dHRGmFKWaLqqT73C7vL7bw3Kd4hDiGIYA_fIQ7HLVQDdFD5A3EB28rV61tuvh3cN-XP28-HK9_lZf_fh6uV5d1Y5LMtQYcY21JtYSJ3XjSNNKSRW0XrRIS-YRLSGPmKBgkRfEOkmYV6AawiwW9Li6nL0-2a3Z57Cz-c4kG8x9IOWNsXkIrgPDmqYhqOixF0z6oudOlqeAt5ppSYvrfHbtx2YH3kEcsu2eSZ-fxHBjNulgWMlSqCmZTw-CnH6P0A9mF3oHXWcjpLE3pdxYc8LJhH78B92mMcdSqkIxKZVQhBfqdKY2tnwgxDaVd11ZHnbBpQhtKPEVw1SW7qJJ-3m-4HLq-wztY_YYmWkAzDQAZh6AQn94-uFH9m_HC3AyAzchensb_s8GBYHWPoGZZkLQP8lmvug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547786825</pqid></control><display><type>article</type><title>New Type Continuities via Abel Convergence</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Cakalli, Huseyin ; Albayrak, Mehmet</creator><contributor>Fernandez-Anaya, Guillermo</contributor><creatorcontrib>Cakalli, Huseyin ; Albayrak, Mehmet ; Fernandez-Anaya, Guillermo</creatorcontrib><description>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/398379</identifier><identifier>PMID: 24883393</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Continuity ; Convergence ; Convergence (Mathematics) ; Dynamical systems ; Information theory ; Investigations ; Mathematical research ; Mathematics ; Mathematics - methods ; Models, Theoretical ; Numbers ; Science</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-6</ispartof><rights>Copyright © 2014 Huseyin Cakalli and Mehmet Albayrak.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Huseyin Cakalli and Mehmet Albayrak. Huseyin Cakalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 H. Cakalli and M. Albayrak. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</citedby><cites>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</cites><orcidid>0000-0001-7344-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1547786825/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1547786825?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24883393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fernandez-Anaya, Guillermo</contributor><creatorcontrib>Cakalli, Huseyin</creatorcontrib><creatorcontrib>Albayrak, Mehmet</creatorcontrib><title>New Type Continuities via Abel Convergence</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</description><subject>Continuity</subject><subject>Convergence</subject><subject>Convergence (Mathematics)</subject><subject>Dynamical systems</subject><subject>Information theory</subject><subject>Investigations</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics - methods</subject><subject>Models, Theoretical</subject><subject>Numbers</subject><subject>Science</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEUwAdR7Fo9eZcFL1KZNt8fl8KyWC0UvVTwFjLJm22W2WTNzGzpf2-mU0vrSXIIvPzyy8t7r6reY3SKMednBGF2RrWiUr-oFphTWUvGfr2sFoRyUQvM0FH1pu-3CFElMX9dHRGmFKWaLqqT73C7vL7bw3Kd4hDiGIYA_fIQ7HLVQDdFD5A3EB28rV61tuvh3cN-XP28-HK9_lZf_fh6uV5d1Y5LMtQYcY21JtYSJ3XjSNNKSRW0XrRIS-YRLSGPmKBgkRfEOkmYV6AawiwW9Li6nL0-2a3Z57Cz-c4kG8x9IOWNsXkIrgPDmqYhqOixF0z6oudOlqeAt5ppSYvrfHbtx2YH3kEcsu2eSZ-fxHBjNulgWMlSqCmZTw-CnH6P0A9mF3oHXWcjpLE3pdxYc8LJhH78B92mMcdSqkIxKZVQhBfqdKY2tnwgxDaVd11ZHnbBpQhtKPEVw1SW7qJJ-3m-4HLq-wztY_YYmWkAzDQAZh6AQn94-uFH9m_HC3AyAzchensb_s8GBYHWPoGZZkLQP8lmvug</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Cakalli, Huseyin</creator><creator>Albayrak, Mehmet</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7344-5826</orcidid></search><sort><creationdate>20140101</creationdate><title>New Type Continuities via Abel Convergence</title><author>Cakalli, Huseyin ; Albayrak, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Continuity</topic><topic>Convergence</topic><topic>Convergence (Mathematics)</topic><topic>Dynamical systems</topic><topic>Information theory</topic><topic>Investigations</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics - methods</topic><topic>Models, Theoretical</topic><topic>Numbers</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakalli, Huseyin</creatorcontrib><creatorcontrib>Albayrak, Mehmet</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakalli, Huseyin</au><au>Albayrak, Mehmet</au><au>Fernandez-Anaya, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Type Continuities via Abel Convergence</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24883393</pmid><doi>10.1155/2014/398379</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7344-5826</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2356-6140 |
ispartof | TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-6 |
issn | 2356-6140 1537-744X 1537-744X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973 |
source | Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Continuity Convergence Convergence (Mathematics) Dynamical systems Information theory Investigations Mathematical research Mathematics Mathematics - methods Models, Theoretical Numbers Science |
title | New Type Continuities via Abel Convergence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Type%20Continuities%20via%20Abel%20Convergence&rft.jtitle=TheScientificWorld&rft.au=Cakalli,%20Huseyin&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/398379&rft_dat=%3Cgale_doaj_%3EA413711506%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547786825&rft_id=info:pmid/24883393&rft_galeid=A413711506&rfr_iscdi=true |