Loading…

New Type Continuities via Abel Convergence

We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a seq...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-6
Main Authors: Cakalli, Huseyin, Albayrak, Mehmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163
cites cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163
container_end_page 6
container_issue 2014
container_start_page 1
container_title TheScientificWorld
container_volume 2014
creator Cakalli, Huseyin
Albayrak, Mehmet
description We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.
doi_str_mv 10.1155/2014/398379
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413711506</galeid><doaj_id>oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973</doaj_id><sourcerecordid>A413711506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</originalsourceid><addsrcrecordid>eNqNks1rFDEUwAdR7Fo9eZcFL1KZNt8fl8KyWC0UvVTwFjLJm22W2WTNzGzpf2-mU0vrSXIIvPzyy8t7r6reY3SKMednBGF2RrWiUr-oFphTWUvGfr2sFoRyUQvM0FH1pu-3CFElMX9dHRGmFKWaLqqT73C7vL7bw3Kd4hDiGIYA_fIQ7HLVQDdFD5A3EB28rV61tuvh3cN-XP28-HK9_lZf_fh6uV5d1Y5LMtQYcY21JtYSJ3XjSNNKSRW0XrRIS-YRLSGPmKBgkRfEOkmYV6AawiwW9Li6nL0-2a3Z57Cz-c4kG8x9IOWNsXkIrgPDmqYhqOixF0z6oudOlqeAt5ppSYvrfHbtx2YH3kEcsu2eSZ-fxHBjNulgWMlSqCmZTw-CnH6P0A9mF3oHXWcjpLE3pdxYc8LJhH78B92mMcdSqkIxKZVQhBfqdKY2tnwgxDaVd11ZHnbBpQhtKPEVw1SW7qJJ-3m-4HLq-wztY_YYmWkAzDQAZh6AQn94-uFH9m_HC3AyAzchensb_s8GBYHWPoGZZkLQP8lmvug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547786825</pqid></control><display><type>article</type><title>New Type Continuities via Abel Convergence</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Cakalli, Huseyin ; Albayrak, Mehmet</creator><contributor>Fernandez-Anaya, Guillermo</contributor><creatorcontrib>Cakalli, Huseyin ; Albayrak, Mehmet ; Fernandez-Anaya, Guillermo</creatorcontrib><description>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2014/398379</identifier><identifier>PMID: 24883393</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Continuity ; Convergence ; Convergence (Mathematics) ; Dynamical systems ; Information theory ; Investigations ; Mathematical research ; Mathematics ; Mathematics - methods ; Models, Theoretical ; Numbers ; Science</subject><ispartof>TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-6</ispartof><rights>Copyright © 2014 Huseyin Cakalli and Mehmet Albayrak.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Huseyin Cakalli and Mehmet Albayrak. Huseyin Cakalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 H. Cakalli and M. Albayrak. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</citedby><cites>FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</cites><orcidid>0000-0001-7344-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1547786825/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1547786825?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24883393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fernandez-Anaya, Guillermo</contributor><creatorcontrib>Cakalli, Huseyin</creatorcontrib><creatorcontrib>Albayrak, Mehmet</creatorcontrib><title>New Type Continuities via Abel Convergence</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</description><subject>Continuity</subject><subject>Convergence</subject><subject>Convergence (Mathematics)</subject><subject>Dynamical systems</subject><subject>Information theory</subject><subject>Investigations</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics - methods</subject><subject>Models, Theoretical</subject><subject>Numbers</subject><subject>Science</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEUwAdR7Fo9eZcFL1KZNt8fl8KyWC0UvVTwFjLJm22W2WTNzGzpf2-mU0vrSXIIvPzyy8t7r6reY3SKMednBGF2RrWiUr-oFphTWUvGfr2sFoRyUQvM0FH1pu-3CFElMX9dHRGmFKWaLqqT73C7vL7bw3Kd4hDiGIYA_fIQ7HLVQDdFD5A3EB28rV61tuvh3cN-XP28-HK9_lZf_fh6uV5d1Y5LMtQYcY21JtYSJ3XjSNNKSRW0XrRIS-YRLSGPmKBgkRfEOkmYV6AawiwW9Li6nL0-2a3Z57Cz-c4kG8x9IOWNsXkIrgPDmqYhqOixF0z6oudOlqeAt5ppSYvrfHbtx2YH3kEcsu2eSZ-fxHBjNulgWMlSqCmZTw-CnH6P0A9mF3oHXWcjpLE3pdxYc8LJhH78B92mMcdSqkIxKZVQhBfqdKY2tnwgxDaVd11ZHnbBpQhtKPEVw1SW7qJJ-3m-4HLq-wztY_YYmWkAzDQAZh6AQn94-uFH9m_HC3AyAzchensb_s8GBYHWPoGZZkLQP8lmvug</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Cakalli, Huseyin</creator><creator>Albayrak, Mehmet</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7344-5826</orcidid></search><sort><creationdate>20140101</creationdate><title>New Type Continuities via Abel Convergence</title><author>Cakalli, Huseyin ; Albayrak, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Continuity</topic><topic>Convergence</topic><topic>Convergence (Mathematics)</topic><topic>Dynamical systems</topic><topic>Information theory</topic><topic>Investigations</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics - methods</topic><topic>Models, Theoretical</topic><topic>Numbers</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakalli, Huseyin</creatorcontrib><creatorcontrib>Albayrak, Mehmet</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakalli, Huseyin</au><au>Albayrak, Mehmet</au><au>Fernandez-Anaya, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Type Continuities via Abel Convergence</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>We investigate the concept of Abel continuity. A function f defined on a subset of ℝ, the set of real numbers, is Abel continuous if it preserves Abel convergent sequences. Some other types of continuities are also studied and interesting result is obtained. It turned out that uniform limit of a sequence of Abel continuous functions is Abel continuous and the set of Abel continuous functions is a closed subset of continuous functions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24883393</pmid><doi>10.1155/2014/398379</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7344-5826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2014-01, Vol.2014 (2014), p.1-6
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4bbb207731d647d0975c78efe5f94973
source Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Continuity
Convergence
Convergence (Mathematics)
Dynamical systems
Information theory
Investigations
Mathematical research
Mathematics
Mathematics - methods
Models, Theoretical
Numbers
Science
title New Type Continuities via Abel Convergence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Type%20Continuities%20via%20Abel%20Convergence&rft.jtitle=TheScientificWorld&rft.au=Cakalli,%20Huseyin&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2014/398379&rft_dat=%3Cgale_doaj_%3EA413711506%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-10591992aa2c79bc2bf7738efd6f0974d032bfd0463ea0d62ac724d8e8b24a163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547786825&rft_id=info:pmid/24883393&rft_galeid=A413711506&rfr_iscdi=true