Loading…
Fitting a function to time-dependent ensemble averaged data
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion...
Saved in:
Published in: | Scientific reports 2018-05, Vol.8 (1), p.6984-11, Article 6984 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963 |
---|---|
cites | cdi_FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 6984 |
container_title | Scientific reports |
container_volume | 8 |
creator | Fogelmark, Karl Lomholt, Michael A. Irbäck, Anders Ambjörnsson, Tobias |
description | Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software. |
doi_str_mv | 10.1038/s41598-018-24983-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4bf7b352ae46409b8ae46a9f37d8019e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4bf7b352ae46409b8ae46a9f37d8019e</doaj_id><sourcerecordid>2035240029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhgdRbKn9A17IgDfeTM3nJEEQpFhbWPBGr0M-TsZZ5mNNMpX992Y7a-16YeCQQ_KeJzmHt6peY3SFEZXvE8NcyQZh2RCmJG32z6pzghhvCCXk-ZP8rLpMaYvK4kQxrF5WZ0QJwjGS59WHmz7nfupqU4dlcrmfpzrPde5HaDzsYPIw5RqmBKMdoDb3EE0HvvYmm1fVi2CGBJfH_aL6fvP52_Vts_n65e7606ZxLVK5kQi3yHLCvMc4BN-2UgWmROu5EswaEEIxyhwIyixFXqIixxQFLwU41dKL6m7l-tls9S72o4l7PZtePxzMsdMm5t4NoJkNwlJODLCWIWXlITEqUFGwWEFhbVZW-gW7xZ7QhmVXwpbQCTQRAQdDrFYYG80oUVpy6zR1FAlOSODcFdzHFVdYI3hXhhXNcEI9vZn6H7qb7zVXlDGECuDdERDnnwukrMc-ORgGM8G8JE1Q6aYIiSrSt_9It_MSpzL5g4oRwbHkRUVWlYtzShHC42cw0gfn6NU5ujhHPzhH70vRm6dtPJb88UkR0OPYytXUQfz79n-wvwGxJszX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034275185</pqid></control><display><type>article</type><title>Fitting a function to time-dependent ensemble averaged data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Fogelmark, Karl ; Lomholt, Michael A. ; Irbäck, Anders ; Ambjörnsson, Tobias</creator><creatorcontrib>Fogelmark, Karl ; Lomholt, Michael A. ; Irbäck, Anders ; Ambjörnsson, Tobias</creatorcontrib><description>Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-24983-y</identifier><identifier>PMID: 29725108</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2265 ; 639/766/530 ; 639/766/747 ; Annan fysik ; Biofysiks ; Biologi ; Biological Sciences ; Biophysics ; Brownian motion ; Fysik ; Humanities and Social Sciences ; Least squares method ; Matematik ; Mathematics ; multidisciplinary ; Natural Sciences ; Naturvetenskap ; Other Physics Topics ; Parameter estimation ; Physical Sciences ; Probability Theory and Statistics ; Sannolikhetsteori och statistik ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2018-05, Vol.8 (1), p.6984-11, Article 6984</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963</citedby><cites>FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963</cites><orcidid>0000-0003-1384-0626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2034275185/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2034275185?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29725108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/27f1fa2b-911a-4329-85bc-3c307522f55c$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fogelmark, Karl</creatorcontrib><creatorcontrib>Lomholt, Michael A.</creatorcontrib><creatorcontrib>Irbäck, Anders</creatorcontrib><creatorcontrib>Ambjörnsson, Tobias</creatorcontrib><title>Fitting a function to time-dependent ensemble averaged data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.</description><subject>631/57/2265</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Annan fysik</subject><subject>Biofysiks</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Brownian motion</subject><subject>Fysik</subject><subject>Humanities and Social Sciences</subject><subject>Least squares method</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>multidisciplinary</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Other Physics Topics</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>Probability Theory and Statistics</subject><subject>Sannolikhetsteori och statistik</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl1rFDEUhgdRbKn9A17IgDfeTM3nJEEQpFhbWPBGr0M-TsZZ5mNNMpX992Y7a-16YeCQQ_KeJzmHt6peY3SFEZXvE8NcyQZh2RCmJG32z6pzghhvCCXk-ZP8rLpMaYvK4kQxrF5WZ0QJwjGS59WHmz7nfupqU4dlcrmfpzrPde5HaDzsYPIw5RqmBKMdoDb3EE0HvvYmm1fVi2CGBJfH_aL6fvP52_Vts_n65e7606ZxLVK5kQi3yHLCvMc4BN-2UgWmROu5EswaEEIxyhwIyixFXqIixxQFLwU41dKL6m7l-tls9S72o4l7PZtePxzMsdMm5t4NoJkNwlJODLCWIWXlITEqUFGwWEFhbVZW-gW7xZ7QhmVXwpbQCTQRAQdDrFYYG80oUVpy6zR1FAlOSODcFdzHFVdYI3hXhhXNcEI9vZn6H7qb7zVXlDGECuDdERDnnwukrMc-ORgGM8G8JE1Q6aYIiSrSt_9It_MSpzL5g4oRwbHkRUVWlYtzShHC42cw0gfn6NU5ujhHPzhH70vRm6dtPJb88UkR0OPYytXUQfz79n-wvwGxJszX</recordid><startdate>20180503</startdate><enddate>20180503</enddate><creator>Fogelmark, Karl</creator><creator>Lomholt, Michael A.</creator><creator>Irbäck, Anders</creator><creator>Ambjörnsson, Tobias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1384-0626</orcidid></search><sort><creationdate>20180503</creationdate><title>Fitting a function to time-dependent ensemble averaged data</title><author>Fogelmark, Karl ; Lomholt, Michael A. ; Irbäck, Anders ; Ambjörnsson, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/57/2265</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Annan fysik</topic><topic>Biofysiks</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Brownian motion</topic><topic>Fysik</topic><topic>Humanities and Social Sciences</topic><topic>Least squares method</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>multidisciplinary</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Other Physics Topics</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>Probability Theory and Statistics</topic><topic>Sannolikhetsteori och statistik</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogelmark, Karl</creatorcontrib><creatorcontrib>Lomholt, Michael A.</creatorcontrib><creatorcontrib>Irbäck, Anders</creatorcontrib><creatorcontrib>Ambjörnsson, Tobias</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Hospital Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Database</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogelmark, Karl</au><au>Lomholt, Michael A.</au><au>Irbäck, Anders</au><au>Ambjörnsson, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting a function to time-dependent ensemble averaged data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-05-03</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>6984</spage><epage>11</epage><pages>6984-11</pages><artnum>6984</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29725108</pmid><doi>10.1038/s41598-018-24983-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1384-0626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-05, Vol.8 (1), p.6984-11, Article 6984 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4bf7b352ae46409b8ae46a9f37d8019e |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/57/2265 639/766/530 639/766/747 Annan fysik Biofysiks Biologi Biological Sciences Biophysics Brownian motion Fysik Humanities and Social Sciences Least squares method Matematik Mathematics multidisciplinary Natural Sciences Naturvetenskap Other Physics Topics Parameter estimation Physical Sciences Probability Theory and Statistics Sannolikhetsteori och statistik Science Science (multidisciplinary) |
title | Fitting a function to time-dependent ensemble averaged data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T02%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20a%20function%20to%20time-dependent%20ensemble%20averaged%20data&rft.jtitle=Scientific%20reports&rft.au=Fogelmark,%20Karl&rft.date=2018-05-03&rft.volume=8&rft.issue=1&rft.spage=6984&rft.epage=11&rft.pages=6984-11&rft.artnum=6984&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-24983-y&rft_dat=%3Cproquest_doaj_%3E2035240029%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c609t-80160b524dd11ffd6689f4976d5974bae779434ce734b30d8060b130fd87ec963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034275185&rft_id=info:pmid/29725108&rfr_iscdi=true |