Loading…
Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection
Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered...
Saved in:
Published in: | Frontiers in neuroscience 2023-11, Vol.17, p.1275065-1275065 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3 |
container_end_page | 1275065 |
container_issue | |
container_start_page | 1275065 |
container_title | Frontiers in neuroscience |
container_volume | 17 |
creator | Liu, Haojie Liu, Quan Cai, Mincheng Chen, Kun Ma, Li Meng, Wei Zhou, Zude Ai, Qingsong |
description | Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements.
To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN.
Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms.
The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection. |
doi_str_mv | 10.3389/fnins.2023.1275065 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814</doaj_id><sourcerecordid>2894251792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0Eoi_-AAsUiU03GfxOvKwqCpUqsQGpO-vGvh4yJPFgO1T99ySdYRasrnX0naN7fQh5z-hGiNZ8ClM_5Q2nXGwYbxTV6hU5Z1rzWirx-Pr0lu0Zuch5R6nmreRvyZloaaO4VufE35SCU-njVHeQ0VfjPJS-zjjCorrKP08w9g6Gaptg_7NycfoTh3k1LNqE5SmmX1WIqULcHiMClH47Y-WxoFvJK_ImwJDx3XFekh93n7_ffq0fvn25v715qJ0wvNRMeycaD55pMMox07EQdOASOcfgmUehNDTBG4Ocou-cYwE6YzhjzrQgLsn9IddH2Nl96kdIzzZCb1-EmLYW0nLVgFY62oFvqaZCSCdU12gMVCFTTkLL5JJ1fcjap_h7xlzs2GeHwwATxjlbbig3kjYNX9CP_6G7OKflfxaqNZIr1piV4gfKpZhzwnBakFG79mlf-rRrn_bY52L6cIyeuxH9yfKvQPEXslmeag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894251792</pqid></control><display><type>article</type><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</creator><creatorcontrib>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</creatorcontrib><description>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements.
To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN.
Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms.
The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2023.1275065</identifier><identifier>PMID: 38075265</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Artificial intelligence ; channel attention mechanism ; Classification ; Deep learning ; driving fatigue detection ; EEG ; Electrodes ; Electroencephalography ; Entropy ; Fatigue ; graph convolutional network ; Methods ; Neural networks ; Physiology ; spatial attention mechanism ; Traffic ; Wavelet transforms</subject><ispartof>Frontiers in neuroscience, 2023-11, Vol.17, p.1275065-1275065</ispartof><rights>Copyright © 2023 Liu, Liu, Cai, Chen, Ma, Meng, Zhou and Ai.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2894251792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2894251792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38075265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cai, Mincheng</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><creatorcontrib>Ai, Qingsong</creatorcontrib><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements.
To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN.
Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms.
The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</description><subject>Artificial intelligence</subject><subject>channel attention mechanism</subject><subject>Classification</subject><subject>Deep learning</subject><subject>driving fatigue detection</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Fatigue</subject><subject>graph convolutional network</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Physiology</subject><subject>spatial attention mechanism</subject><subject>Traffic</subject><subject>Wavelet transforms</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtv1DAUhS0Eoi_-AAsUiU03GfxOvKwqCpUqsQGpO-vGvh4yJPFgO1T99ySdYRasrnX0naN7fQh5z-hGiNZ8ClM_5Q2nXGwYbxTV6hU5Z1rzWirx-Pr0lu0Zuch5R6nmreRvyZloaaO4VufE35SCU-njVHeQ0VfjPJS-zjjCorrKP08w9g6Gaptg_7NycfoTh3k1LNqE5SmmX1WIqULcHiMClH47Y-WxoFvJK_ImwJDx3XFekh93n7_ffq0fvn25v715qJ0wvNRMeycaD55pMMox07EQdOASOcfgmUehNDTBG4Ocou-cYwE6YzhjzrQgLsn9IddH2Nl96kdIzzZCb1-EmLYW0nLVgFY62oFvqaZCSCdU12gMVCFTTkLL5JJ1fcjap_h7xlzs2GeHwwATxjlbbig3kjYNX9CP_6G7OKflfxaqNZIr1piV4gfKpZhzwnBakFG79mlf-rRrn_bY52L6cIyeuxH9yfKvQPEXslmeag</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Liu, Haojie</creator><creator>Liu, Quan</creator><creator>Cai, Mincheng</creator><creator>Chen, Kun</creator><creator>Ma, Li</creator><creator>Meng, Wei</creator><creator>Zhou, Zude</creator><creator>Ai, Qingsong</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231121</creationdate><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><author>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>channel attention mechanism</topic><topic>Classification</topic><topic>Deep learning</topic><topic>driving fatigue detection</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Fatigue</topic><topic>graph convolutional network</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Physiology</topic><topic>spatial attention mechanism</topic><topic>Traffic</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cai, Mincheng</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><creatorcontrib>Ai, Qingsong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haojie</au><au>Liu, Quan</au><au>Cai, Mincheng</au><au>Chen, Kun</au><au>Ma, Li</au><au>Meng, Wei</au><au>Zhou, Zude</au><au>Ai, Qingsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2023-11-21</date><risdate>2023</risdate><volume>17</volume><spage>1275065</spage><epage>1275065</epage><pages>1275065-1275065</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements.
To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN.
Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms.
The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>38075265</pmid><doi>10.3389/fnins.2023.1275065</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2023-11, Vol.17, p.1275065-1275065 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Artificial intelligence channel attention mechanism Classification Deep learning driving fatigue detection EEG Electrodes Electroencephalography Entropy Fatigue graph convolutional network Methods Neural networks Physiology spatial attention mechanism Traffic Wavelet transforms |
title | Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-based%20multi-semantic%20dynamical%20graph%20convolutional%20network%20for%20eeg-based%20fatigue%20detection&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Liu,%20Haojie&rft.date=2023-11-21&rft.volume=17&rft.spage=1275065&rft.epage=1275065&rft.pages=1275065-1275065&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2023.1275065&rft_dat=%3Cproquest_doaj_%3E2894251792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894251792&rft_id=info:pmid/38075265&rfr_iscdi=true |