Loading…

Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection

Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience 2023-11, Vol.17, p.1275065-1275065
Main Authors: Liu, Haojie, Liu, Quan, Cai, Mincheng, Chen, Kun, Ma, Li, Meng, Wei, Zhou, Zude, Ai, Qingsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3
container_end_page 1275065
container_issue
container_start_page 1275065
container_title Frontiers in neuroscience
container_volume 17
creator Liu, Haojie
Liu, Quan
Cai, Mincheng
Chen, Kun
Ma, Li
Meng, Wei
Zhou, Zude
Ai, Qingsong
description Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements. To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN. Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms. The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.
doi_str_mv 10.3389/fnins.2023.1275065
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814</doaj_id><sourcerecordid>2894251792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0Eoi_-AAsUiU03GfxOvKwqCpUqsQGpO-vGvh4yJPFgO1T99ySdYRasrnX0naN7fQh5z-hGiNZ8ClM_5Q2nXGwYbxTV6hU5Z1rzWirx-Pr0lu0Zuch5R6nmreRvyZloaaO4VufE35SCU-njVHeQ0VfjPJS-zjjCorrKP08w9g6Gaptg_7NycfoTh3k1LNqE5SmmX1WIqULcHiMClH47Y-WxoFvJK_ImwJDx3XFekh93n7_ffq0fvn25v715qJ0wvNRMeycaD55pMMox07EQdOASOcfgmUehNDTBG4Ocou-cYwE6YzhjzrQgLsn9IddH2Nl96kdIzzZCb1-EmLYW0nLVgFY62oFvqaZCSCdU12gMVCFTTkLL5JJ1fcjap_h7xlzs2GeHwwATxjlbbig3kjYNX9CP_6G7OKflfxaqNZIr1piV4gfKpZhzwnBakFG79mlf-rRrn_bY52L6cIyeuxH9yfKvQPEXslmeag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894251792</pqid></control><display><type>article</type><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</creator><creatorcontrib>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</creatorcontrib><description>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements. To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN. Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms. The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2023.1275065</identifier><identifier>PMID: 38075265</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Artificial intelligence ; channel attention mechanism ; Classification ; Deep learning ; driving fatigue detection ; EEG ; Electrodes ; Electroencephalography ; Entropy ; Fatigue ; graph convolutional network ; Methods ; Neural networks ; Physiology ; spatial attention mechanism ; Traffic ; Wavelet transforms</subject><ispartof>Frontiers in neuroscience, 2023-11, Vol.17, p.1275065-1275065</ispartof><rights>Copyright © 2023 Liu, Liu, Cai, Chen, Ma, Meng, Zhou and Ai.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2894251792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2894251792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38075265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cai, Mincheng</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><creatorcontrib>Ai, Qingsong</creatorcontrib><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements. To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN. Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms. The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</description><subject>Artificial intelligence</subject><subject>channel attention mechanism</subject><subject>Classification</subject><subject>Deep learning</subject><subject>driving fatigue detection</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Entropy</subject><subject>Fatigue</subject><subject>graph convolutional network</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Physiology</subject><subject>spatial attention mechanism</subject><subject>Traffic</subject><subject>Wavelet transforms</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtv1DAUhS0Eoi_-AAsUiU03GfxOvKwqCpUqsQGpO-vGvh4yJPFgO1T99ySdYRasrnX0naN7fQh5z-hGiNZ8ClM_5Q2nXGwYbxTV6hU5Z1rzWirx-Pr0lu0Zuch5R6nmreRvyZloaaO4VufE35SCU-njVHeQ0VfjPJS-zjjCorrKP08w9g6Gaptg_7NycfoTh3k1LNqE5SmmX1WIqULcHiMClH47Y-WxoFvJK_ImwJDx3XFekh93n7_ffq0fvn25v715qJ0wvNRMeycaD55pMMox07EQdOASOcfgmUehNDTBG4Ocou-cYwE6YzhjzrQgLsn9IddH2Nl96kdIzzZCb1-EmLYW0nLVgFY62oFvqaZCSCdU12gMVCFTTkLL5JJ1fcjap_h7xlzs2GeHwwATxjlbbig3kjYNX9CP_6G7OKflfxaqNZIr1piV4gfKpZhzwnBakFG79mlf-rRrn_bY52L6cIyeuxH9yfKvQPEXslmeag</recordid><startdate>20231121</startdate><enddate>20231121</enddate><creator>Liu, Haojie</creator><creator>Liu, Quan</creator><creator>Cai, Mincheng</creator><creator>Chen, Kun</creator><creator>Ma, Li</creator><creator>Meng, Wei</creator><creator>Zhou, Zude</creator><creator>Ai, Qingsong</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231121</creationdate><title>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</title><author>Liu, Haojie ; Liu, Quan ; Cai, Mincheng ; Chen, Kun ; Ma, Li ; Meng, Wei ; Zhou, Zude ; Ai, Qingsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>channel attention mechanism</topic><topic>Classification</topic><topic>Deep learning</topic><topic>driving fatigue detection</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Entropy</topic><topic>Fatigue</topic><topic>graph convolutional network</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Physiology</topic><topic>spatial attention mechanism</topic><topic>Traffic</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Liu, Quan</creatorcontrib><creatorcontrib>Cai, Mincheng</creatorcontrib><creatorcontrib>Chen, Kun</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Zude</creatorcontrib><creatorcontrib>Ai, Qingsong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haojie</au><au>Liu, Quan</au><au>Cai, Mincheng</au><au>Chen, Kun</au><au>Ma, Li</au><au>Meng, Wei</au><au>Zhou, Zude</au><au>Ai, Qingsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2023-11-21</date><risdate>2023</risdate><volume>17</volume><spage>1275065</spage><epage>1275065</epage><pages>1275065-1275065</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>Establishing a driving fatigue monitoring system is of utmost importance as severe fatigue may lead to unimaginable consequences. Fatigue detection methods based on physiological information have the advantages of reliable and accurate. Among various physiological signals, EEG signals are considered to be the most direct and promising ones. However, most traditional methods overlook the functional connectivity of the brain and fail to meet real-time requirements. To this end, we propose a novel detection model called Attention-Based Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN consists of a channel attention mechanism based on average pooling and max pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and a spatial attention mechanism based on average pooling and max pooling (AM-SAM). AM-CAM allocates weights to the input features, helping the model focus on the important information relevant to fatigue detection. MD-GC can construct intrinsic topological graphs under multi-semantic patterns, allowing GCN to better capture the dependency between physically connected or non-physically connected nodes. AM-SAM can remove redundant spatial node information from the output of MD-GC, thereby reducing interference in fatigue detection. Moreover, we concatenate the DE features extracted from 5 frequency bands and 25 frequency bands as the input of AMD-GCN. Finally, we conduct experiments on the public dataset SEED-VIG, and the accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms. The findings indicate that our proposed strategy performs more effectively for EEG-based driving fatigue detection.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>38075265</pmid><doi>10.3389/fnins.2023.1275065</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-4548
ispartof Frontiers in neuroscience, 2023-11, Vol.17, p.1275065-1275065
issn 1662-4548
1662-453X
1662-453X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4c0bad8060334c35b76ef05e15c4a814
source PubMed (Medline); Publicly Available Content Database
subjects Artificial intelligence
channel attention mechanism
Classification
Deep learning
driving fatigue detection
EEG
Electrodes
Electroencephalography
Entropy
Fatigue
graph convolutional network
Methods
Neural networks
Physiology
spatial attention mechanism
Traffic
Wavelet transforms
title Attention-based multi-semantic dynamical graph convolutional network for eeg-based fatigue detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-based%20multi-semantic%20dynamical%20graph%20convolutional%20network%20for%20eeg-based%20fatigue%20detection&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Liu,%20Haojie&rft.date=2023-11-21&rft.volume=17&rft.spage=1275065&rft.epage=1275065&rft.pages=1275065-1275065&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2023.1275065&rft_dat=%3Cproquest_doaj_%3E2894251792%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-16dc37dad16a95c19b1ff6f24e22efd1de356a7fd99e20edbcc1fab99211c98a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2894251792&rft_id=info:pmid/38075265&rfr_iscdi=true