Loading…

Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization

Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regul...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2024-12, Vol.16 (1), p.55-18, Article 55
Main Authors: Li, Xudong, Qiang, Zhuomin, Han, Guokang, Guan, Shuyun, Zhao, Yang, Lou, Shuaifeng, Zhu, Yongming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3
cites cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3
container_end_page 18
container_issue 1
container_start_page 55
container_title Nano-micro letters
container_volume 16
creator Li, Xudong
Qiang, Zhuomin
Han, Guokang
Guan, Shuyun
Zhao, Yang
Lou, Shuaifeng
Zhu, Yongming
description Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regulation of 3 d orbital structure, leading to a moderate hybridization with the p orbital of key intermediate. The homogeneous nucleation of Li 2 O 2 is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O 2 /Li 2 O 2 conversion. High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF 3 -HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d -band center and d orbital occupancy of active centers, which optimizes the d – p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO 2 and thus reinforcing the reaction kinetics. As a result, the Li–O 2 battery with KCoMnNiMgZnF 3 -HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.
doi_str_mv 10.1007/s40820-023-01275-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49</doaj_id><sourcerecordid>2903324888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAkbhwCYw_8uETQtWWrVQJhMrZ8sdk1yUbBzupGk68A2_Ik-DdlEI5cLI985u_PeN_lj0n8JoA1G8ih4ZCAZQVQGhdFuxRdkxJCUVZluRx2jNCiqqG6ig7jdFpKCmvE8ifZkesIdAISo4zXPVb1Ru0-Se0_jZfdWjG4I0aVTdHF3PX52u32RarPoWHOf-Iwd_EL27E_LybfHAWY67n_Eq5Lp36TW5_fv8x5OtZp5z7pkbn-2fZk1Z1EU_v1pPs8_nq6mxdXH54f3H27rIwFaFj0UKrAJDpkhmtW0rqinHUjFJqKEdqReqZVYSZkmMpaoaoNRXWlvtZtMhOsotF13p1LYfgdirM0isnDwEfNlKF0ZkOJTdMobKVwLriIGrVEqF0IyyAahQXSevtojVMeofWYBqA6h6IPsz0bis3_kYSqGkDrEkKr-4Ugv86YRzlzkWDXad69FOUVABjlDfNHn35D3rtp9CnWR0owhkwmii6UCb4GAO2968hIPeukIsrZHKFPLhCslT04u8-7kt-eyABbAHisP8_DH_u_o_sLxwaxC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903143032</pqid></control><display><type>article</type><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><source>Open Access: PubMed Central</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</creator><creatorcontrib>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</creatorcontrib><description>Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regulation of 3 d orbital structure, leading to a moderate hybridization with the p orbital of key intermediate. The homogeneous nucleation of Li 2 O 2 is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O 2 /Li 2 O 2 conversion. High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF 3 -HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d -band center and d orbital occupancy of active centers, which optimizes the d – p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO 2 and thus reinforcing the reaction kinetics. As a result, the Li–O 2 battery with KCoMnNiMgZnF 3 -HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.</description><identifier>ISSN: 2311-6706</identifier><identifier>ISSN: 2150-5551</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-023-01275-3</identifier><identifier>PMID: 38108921</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Catalysts ; Catalytic kinetics ; Discharge ; d–p orbital hybridization ; Electrocatalysis ; Electrocatalysts ; Engineering ; Entropy ; Entropy effect ; Fluorides ; Hybridization ; KCoMnNiMgZnF3-HEC perovskite fluoride ; Lithium batteries ; Lithium–oxygen batteries ; Mass transfer ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Nucleation ; Perovskites ; Reaction intermediates ; Reaction kinetics</subject><ispartof>Nano-micro letters, 2024-12, Vol.16 (1), p.55-18, Article 55</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</citedby><cites>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728038/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2903143032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38108921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xudong</creatorcontrib><creatorcontrib>Qiang, Zhuomin</creatorcontrib><creatorcontrib>Han, Guokang</creatorcontrib><creatorcontrib>Guan, Shuyun</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Lou, Shuaifeng</creatorcontrib><creatorcontrib>Zhu, Yongming</creatorcontrib><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regulation of 3 d orbital structure, leading to a moderate hybridization with the p orbital of key intermediate. The homogeneous nucleation of Li 2 O 2 is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O 2 /Li 2 O 2 conversion. High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF 3 -HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d -band center and d orbital occupancy of active centers, which optimizes the d – p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO 2 and thus reinforcing the reaction kinetics. As a result, the Li–O 2 battery with KCoMnNiMgZnF 3 -HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.</description><subject>Catalysts</subject><subject>Catalytic kinetics</subject><subject>Discharge</subject><subject>d–p orbital hybridization</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Entropy effect</subject><subject>Fluorides</subject><subject>Hybridization</subject><subject>KCoMnNiMgZnF3-HEC perovskite fluoride</subject><subject>Lithium batteries</subject><subject>Lithium–oxygen batteries</subject><subject>Mass transfer</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nucleation</subject><subject>Perovskites</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><issn>2311-6706</issn><issn>2150-5551</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAkbhwCYw_8uETQtWWrVQJhMrZ8sdk1yUbBzupGk68A2_Ik-DdlEI5cLI985u_PeN_lj0n8JoA1G8ih4ZCAZQVQGhdFuxRdkxJCUVZluRx2jNCiqqG6ig7jdFpKCmvE8ifZkesIdAISo4zXPVb1Ru0-Se0_jZfdWjG4I0aVTdHF3PX52u32RarPoWHOf-Iwd_EL27E_LybfHAWY67n_Eq5Lp36TW5_fv8x5OtZp5z7pkbn-2fZk1Z1EU_v1pPs8_nq6mxdXH54f3H27rIwFaFj0UKrAJDpkhmtW0rqinHUjFJqKEdqReqZVYSZkmMpaoaoNRXWlvtZtMhOsotF13p1LYfgdirM0isnDwEfNlKF0ZkOJTdMobKVwLriIGrVEqF0IyyAahQXSevtojVMeofWYBqA6h6IPsz0bis3_kYSqGkDrEkKr-4Ugv86YRzlzkWDXad69FOUVABjlDfNHn35D3rtp9CnWR0owhkwmii6UCb4GAO2968hIPeukIsrZHKFPLhCslT04u8-7kt-eyABbAHisP8_DH_u_o_sLxwaxC0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Xudong</creator><creator>Qiang, Zhuomin</creator><creator>Han, Guokang</creator><creator>Guan, Shuyun</creator><creator>Zhao, Yang</creator><creator>Lou, Shuaifeng</creator><creator>Zhu, Yongming</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><author>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic kinetics</topic><topic>Discharge</topic><topic>d–p orbital hybridization</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Entropy effect</topic><topic>Fluorides</topic><topic>Hybridization</topic><topic>KCoMnNiMgZnF3-HEC perovskite fluoride</topic><topic>Lithium batteries</topic><topic>Lithium–oxygen batteries</topic><topic>Mass transfer</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nucleation</topic><topic>Perovskites</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xudong</creatorcontrib><creatorcontrib>Qiang, Zhuomin</creatorcontrib><creatorcontrib>Han, Guokang</creatorcontrib><creatorcontrib>Guan, Shuyun</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Lou, Shuaifeng</creatorcontrib><creatorcontrib>Zhu, Yongming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xudong</au><au>Qiang, Zhuomin</au><au>Han, Guokang</au><au>Guan, Shuyun</au><au>Zhao, Yang</au><au>Lou, Shuaifeng</au><au>Zhu, Yongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>55</spage><epage>18</epage><pages>55-18</pages><artnum>55</artnum><issn>2311-6706</issn><issn>2150-5551</issn><eissn>2150-5551</eissn><abstract>Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regulation of 3 d orbital structure, leading to a moderate hybridization with the p orbital of key intermediate. The homogeneous nucleation of Li 2 O 2 is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O 2 /Li 2 O 2 conversion. High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF 3 -HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d -band center and d orbital occupancy of active centers, which optimizes the d – p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO 2 and thus reinforcing the reaction kinetics. As a result, the Li–O 2 battery with KCoMnNiMgZnF 3 -HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38108921</pmid><doi>10.1007/s40820-023-01275-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2024-12, Vol.16 (1), p.55-18, Article 55
issn 2311-6706
2150-5551
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49
source Open Access: PubMed Central; Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest)
subjects Catalysts
Catalytic kinetics
Discharge
d–p orbital hybridization
Electrocatalysis
Electrocatalysts
Engineering
Entropy
Entropy effect
Fluorides
Hybridization
KCoMnNiMgZnF3-HEC perovskite fluoride
Lithium batteries
Lithium–oxygen batteries
Mass transfer
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nucleation
Perovskites
Reaction intermediates
Reaction kinetics
title Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Redox%20Electrocatalysis%20in%20High-Entropy%20Perovskite%20Fluorides%20by%20Tailoring%20d%E2%80%93p%20Hybridization&rft.jtitle=Nano-micro%20letters&rft.au=Li,%20Xudong&rft.date=2024-12-01&rft.volume=16&rft.issue=1&rft.spage=55&rft.epage=18&rft.pages=55-18&rft.artnum=55&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-023-01275-3&rft_dat=%3Cproquest_doaj_%3E2903324888%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903143032&rft_id=info:pmid/38108921&rfr_iscdi=true