Loading…
Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization
Highlights The tailored KCoMnNiMgZnF 3 -HEC cathode delivers extremely high discharge capacity (22,104 mAh g −1 ), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported. Entropy effect of multiple sites in KCoMnNiMgZnF 3 -HEC engenders appropriate regul...
Saved in:
Published in: | Nano-micro letters 2024-12, Vol.16 (1), p.55-18, Article 55 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 55 |
container_title | Nano-micro letters |
container_volume | 16 |
creator | Li, Xudong Qiang, Zhuomin Han, Guokang Guan, Shuyun Zhao, Yang Lou, Shuaifeng Zhu, Yongming |
description | Highlights
The tailored KCoMnNiMgZnF
3
-HEC cathode delivers extremely high discharge capacity (22,104 mAh g
−1
), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported.
Entropy effect of multiple sites in KCoMnNiMgZnF
3
-HEC engenders appropriate regulation of 3
d
orbital structure, leading to a moderate hybridization with the
p
orbital of key intermediate.
The homogeneous nucleation of Li
2
O
2
is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O
2
/Li
2
O
2
conversion.
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF
3
-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the
d
-band center and d orbital occupancy of active centers, which optimizes the
d
–
p
hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO
2
and thus reinforcing the reaction kinetics. As a result, the Li–O
2
battery with KCoMnNiMgZnF
3
-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and
d
orbital structure optimization for advanced electrocatalyst. |
doi_str_mv | 10.1007/s40820-023-01275-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49</doaj_id><sourcerecordid>2903324888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAkbhwCYw_8uETQtWWrVQJhMrZ8sdk1yUbBzupGk68A2_Ik-DdlEI5cLI985u_PeN_lj0n8JoA1G8ih4ZCAZQVQGhdFuxRdkxJCUVZluRx2jNCiqqG6ig7jdFpKCmvE8ifZkesIdAISo4zXPVb1Ru0-Se0_jZfdWjG4I0aVTdHF3PX52u32RarPoWHOf-Iwd_EL27E_LybfHAWY67n_Eq5Lp36TW5_fv8x5OtZp5z7pkbn-2fZk1Z1EU_v1pPs8_nq6mxdXH54f3H27rIwFaFj0UKrAJDpkhmtW0rqinHUjFJqKEdqReqZVYSZkmMpaoaoNRXWlvtZtMhOsotF13p1LYfgdirM0isnDwEfNlKF0ZkOJTdMobKVwLriIGrVEqF0IyyAahQXSevtojVMeofWYBqA6h6IPsz0bis3_kYSqGkDrEkKr-4Ugv86YRzlzkWDXad69FOUVABjlDfNHn35D3rtp9CnWR0owhkwmii6UCb4GAO2968hIPeukIsrZHKFPLhCslT04u8-7kt-eyABbAHisP8_DH_u_o_sLxwaxC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903143032</pqid></control><display><type>article</type><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><source>Open Access: PubMed Central</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</creator><creatorcontrib>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</creatorcontrib><description>Highlights
The tailored KCoMnNiMgZnF
3
-HEC cathode delivers extremely high discharge capacity (22,104 mAh g
−1
), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported.
Entropy effect of multiple sites in KCoMnNiMgZnF
3
-HEC engenders appropriate regulation of 3
d
orbital structure, leading to a moderate hybridization with the
p
orbital of key intermediate.
The homogeneous nucleation of Li
2
O
2
is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O
2
/Li
2
O
2
conversion.
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF
3
-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the
d
-band center and d orbital occupancy of active centers, which optimizes the
d
–
p
hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO
2
and thus reinforcing the reaction kinetics. As a result, the Li–O
2
battery with KCoMnNiMgZnF
3
-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and
d
orbital structure optimization for advanced electrocatalyst.</description><identifier>ISSN: 2311-6706</identifier><identifier>ISSN: 2150-5551</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-023-01275-3</identifier><identifier>PMID: 38108921</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Catalysts ; Catalytic kinetics ; Discharge ; d–p orbital hybridization ; Electrocatalysis ; Electrocatalysts ; Engineering ; Entropy ; Entropy effect ; Fluorides ; Hybridization ; KCoMnNiMgZnF3-HEC perovskite fluoride ; Lithium batteries ; Lithium–oxygen batteries ; Mass transfer ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Nucleation ; Perovskites ; Reaction intermediates ; Reaction kinetics</subject><ispartof>Nano-micro letters, 2024-12, Vol.16 (1), p.55-18, Article 55</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</citedby><cites>FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728038/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2903143032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38108921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xudong</creatorcontrib><creatorcontrib>Qiang, Zhuomin</creatorcontrib><creatorcontrib>Han, Guokang</creatorcontrib><creatorcontrib>Guan, Shuyun</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Lou, Shuaifeng</creatorcontrib><creatorcontrib>Zhu, Yongming</creatorcontrib><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights
The tailored KCoMnNiMgZnF
3
-HEC cathode delivers extremely high discharge capacity (22,104 mAh g
−1
), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported.
Entropy effect of multiple sites in KCoMnNiMgZnF
3
-HEC engenders appropriate regulation of 3
d
orbital structure, leading to a moderate hybridization with the
p
orbital of key intermediate.
The homogeneous nucleation of Li
2
O
2
is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O
2
/Li
2
O
2
conversion.
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF
3
-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the
d
-band center and d orbital occupancy of active centers, which optimizes the
d
–
p
hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO
2
and thus reinforcing the reaction kinetics. As a result, the Li–O
2
battery with KCoMnNiMgZnF
3
-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and
d
orbital structure optimization for advanced electrocatalyst.</description><subject>Catalysts</subject><subject>Catalytic kinetics</subject><subject>Discharge</subject><subject>d–p orbital hybridization</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Entropy effect</subject><subject>Fluorides</subject><subject>Hybridization</subject><subject>KCoMnNiMgZnF3-HEC perovskite fluoride</subject><subject>Lithium batteries</subject><subject>Lithium–oxygen batteries</subject><subject>Mass transfer</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nucleation</subject><subject>Perovskites</subject><subject>Reaction intermediates</subject><subject>Reaction kinetics</subject><issn>2311-6706</issn><issn>2150-5551</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAkbhwCYw_8uETQtWWrVQJhMrZ8sdk1yUbBzupGk68A2_Ik-DdlEI5cLI985u_PeN_lj0n8JoA1G8ih4ZCAZQVQGhdFuxRdkxJCUVZluRx2jNCiqqG6ig7jdFpKCmvE8ifZkesIdAISo4zXPVb1Ru0-Se0_jZfdWjG4I0aVTdHF3PX52u32RarPoWHOf-Iwd_EL27E_LybfHAWY67n_Eq5Lp36TW5_fv8x5OtZp5z7pkbn-2fZk1Z1EU_v1pPs8_nq6mxdXH54f3H27rIwFaFj0UKrAJDpkhmtW0rqinHUjFJqKEdqReqZVYSZkmMpaoaoNRXWlvtZtMhOsotF13p1LYfgdirM0isnDwEfNlKF0ZkOJTdMobKVwLriIGrVEqF0IyyAahQXSevtojVMeofWYBqA6h6IPsz0bis3_kYSqGkDrEkKr-4Ugv86YRzlzkWDXad69FOUVABjlDfNHn35D3rtp9CnWR0owhkwmii6UCb4GAO2968hIPeukIsrZHKFPLhCslT04u8-7kt-eyABbAHisP8_DH_u_o_sLxwaxC0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Li, Xudong</creator><creator>Qiang, Zhuomin</creator><creator>Han, Guokang</creator><creator>Guan, Shuyun</creator><creator>Zhao, Yang</creator><creator>Lou, Shuaifeng</creator><creator>Zhu, Yongming</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</title><author>Li, Xudong ; Qiang, Zhuomin ; Han, Guokang ; Guan, Shuyun ; Zhao, Yang ; Lou, Shuaifeng ; Zhu, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic kinetics</topic><topic>Discharge</topic><topic>d–p orbital hybridization</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Entropy effect</topic><topic>Fluorides</topic><topic>Hybridization</topic><topic>KCoMnNiMgZnF3-HEC perovskite fluoride</topic><topic>Lithium batteries</topic><topic>Lithium–oxygen batteries</topic><topic>Mass transfer</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nucleation</topic><topic>Perovskites</topic><topic>Reaction intermediates</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xudong</creatorcontrib><creatorcontrib>Qiang, Zhuomin</creatorcontrib><creatorcontrib>Han, Guokang</creatorcontrib><creatorcontrib>Guan, Shuyun</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Lou, Shuaifeng</creatorcontrib><creatorcontrib>Zhu, Yongming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xudong</au><au>Qiang, Zhuomin</au><au>Han, Guokang</au><au>Guan, Shuyun</au><au>Zhao, Yang</au><au>Lou, Shuaifeng</au><au>Zhu, Yongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>55</spage><epage>18</epage><pages>55-18</pages><artnum>55</artnum><issn>2311-6706</issn><issn>2150-5551</issn><eissn>2150-5551</eissn><abstract>Highlights
The tailored KCoMnNiMgZnF
3
-HEC cathode delivers extremely high discharge capacity (22,104 mAh g
−1
), outstanding long-term cyclability (over 500 h), preceding majority of traditional catalysts reported.
Entropy effect of multiple sites in KCoMnNiMgZnF
3
-HEC engenders appropriate regulation of 3
d
orbital structure, leading to a moderate hybridization with the
p
orbital of key intermediate.
The homogeneous nucleation of Li
2
O
2
is achieved on multiple cation site, contributing to effective mass transfer at the three-phase interface, and thus, the reversibility of O
2
/Li
2
O
2
conversion.
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF
3
-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the
d
-band center and d orbital occupancy of active centers, which optimizes the
d
–
p
hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO
2
and thus reinforcing the reaction kinetics. As a result, the Li–O
2
battery with KCoMnNiMgZnF
3
-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and
d
orbital structure optimization for advanced electrocatalyst.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38108921</pmid><doi>10.1007/s40820-023-01275-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-micro letters, 2024-12, Vol.16 (1), p.55-18, Article 55 |
issn | 2311-6706 2150-5551 2150-5551 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4c3aead69e764097af19ab89d00a8a49 |
source | Open Access: PubMed Central; Springer Nature - SpringerLink Journals - Fully Open Access; Publicly Available Content (ProQuest) |
subjects | Catalysts Catalytic kinetics Discharge d–p orbital hybridization Electrocatalysis Electrocatalysts Engineering Entropy Entropy effect Fluorides Hybridization KCoMnNiMgZnF3-HEC perovskite fluoride Lithium batteries Lithium–oxygen batteries Mass transfer Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nucleation Perovskites Reaction intermediates Reaction kinetics |
title | Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d–p Hybridization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Redox%20Electrocatalysis%20in%20High-Entropy%20Perovskite%20Fluorides%20by%20Tailoring%20d%E2%80%93p%20Hybridization&rft.jtitle=Nano-micro%20letters&rft.au=Li,%20Xudong&rft.date=2024-12-01&rft.volume=16&rft.issue=1&rft.spage=55&rft.epage=18&rft.pages=55-18&rft.artnum=55&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-023-01275-3&rft_dat=%3Cproquest_doaj_%3E2903324888%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-f0fa00e3b53cbbf217634eb3222c24e2d90823613c54e5973eebb29dd50820fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903143032&rft_id=info:pmid/38108921&rfr_iscdi=true |