Loading…

Specific Emitter Identification Based on the Natural Measure

Specific emitter identification (SEI) techniques are often used in civilian and military spectrum-management operations, and they are also applied to support the security and authentication of wireless communication. In this letter, a new SEI method based on the natural measure of the one-dimensiona...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2017-03, Vol.19 (3), p.117
Main Authors: Jia, Yongqiang, Zhu, Shengli, Gan, Lu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Specific emitter identification (SEI) techniques are often used in civilian and military spectrum-management operations, and they are also applied to support the security and authentication of wireless communication. In this letter, a new SEI method based on the natural measure of the one-dimensional component of the chaotic system is proposed. We find that the natural measures of the one-dimensional components of higher dimensional systems exist and that they are quite diverse for different systems. Based on this principle, the natural measure is used as an RF fingerprint in this letter. The natural measure can solve the problems caused by a small amount of data and a low sample rate. The Kullback-Leibler divergence is used to quantify the difference between the natural measures obtained from diverse emitters and classify them. The data obtained from real application are exploited to test the validity of the proposed method. Experimental results show that the proposed method is not only easy to operate, but also quite effective, even though the amount of data is small and the sample rate is low.
ISSN:1099-4300
1099-4300
DOI:10.3390/e19030117