Loading…

Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells

The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point...

Full description

Saved in:
Bibliographic Details
Published in:Cell death discovery 2023-07, Vol.9 (1), p.274-274, Article 274
Main Authors: Zhang, Meichao, Meng, Yiling, Ying, Yingxia, Zhou, Pingting, Zhang, Suning, Fang, Yong, Yao, Yuan, Li, Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3
cites cdi_FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3
container_end_page 274
container_issue 1
container_start_page 274
container_title Cell death discovery
container_volume 9
creator Zhang, Meichao
Meng, Yiling
Ying, Yingxia
Zhou, Pingting
Zhang, Suning
Fang, Yong
Yao, Yuan
Li, Dong
description The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.
doi_str_mv 10.1038/s41420-023-01575-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c49f55633c5433bbe8ddb84bd7e9456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c49f55633c5433bbe8ddb84bd7e9456</doaj_id><sourcerecordid>2844093038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3</originalsourceid><addsrcrecordid>eNp9kk1vFDEMhiMEotXSP8ABjcSFy5RMPibJCVUV0EqVOHR7jjKJs81qdrIk2Ur775vZLaXlwMlW_Pi1Yxuhjx0-7zCVXzPrGMEtJrTFHRe83b9BpwRz2QrR9W9f-CfoLOc1xjPGhKTv0QkVHAsq6Sm6u4URbAkP0JjZmBLi1ETf3C4vlrQxkzt4vHHBFlMgN-UeGl-9GdrsYYzBNdsUVzCFElNjYRzzB_TOmzHD2ZNdoLsf35eXV-3Nr5_Xlxc3reWsK60demUxWKkcEeC8Eb33UnlSW8WMSMOU7zG3mHmlOBDVD952nFpZOeUHukDXR10XzVpvU9iYtNfRBH14iGmlTSrBjqCZrWKc95TW2pQOA0jnBskGJ0Cx-r5A345a292wAWdhKsmMr0RfR6Zwr1fxQc_rIJyqqvDlSSHF3zvIRW9CnudhJoi7rIlkDCta8Yp-_gddx12a6qxmihJGhOCVIkfKpphzAv_cTYcPZfXxCnS9An24Ar2vSZ9e_uM55c_OK0CPQK6haQXpb-3_yD4CtB29Fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843242775</pqid></control><display><type>article</type><title>Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells</title><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Meichao ; Meng, Yiling ; Ying, Yingxia ; Zhou, Pingting ; Zhang, Suning ; Fang, Yong ; Yao, Yuan ; Li, Dong</creator><creatorcontrib>Zhang, Meichao ; Meng, Yiling ; Ying, Yingxia ; Zhou, Pingting ; Zhang, Suning ; Fang, Yong ; Yao, Yuan ; Li, Dong</creatorcontrib><description>The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.</description><identifier>ISSN: 2058-7716</identifier><identifier>EISSN: 2058-7716</identifier><identifier>DOI: 10.1038/s41420-023-01575-y</identifier><identifier>PMID: 37507383</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532/1542 ; 631/80/83 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell differentiation ; Granulocyte colony-stimulating factor ; Granulocyte-macrophage colony-stimulating factor ; Leukocytes (neutrophilic) ; Life Sciences ; Macrophages ; Monocytes ; Neutrophils ; Overexpression ; Phosphorylation ; Progenitor cells ; Stat3 protein ; Stat5 protein ; Stem Cells</subject><ispartof>Cell death discovery, 2023-07, Vol.9 (1), p.274-274, Article 274</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3</citedby><cites>FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3</cites><orcidid>0009-0006-7613-3469 ; 0000-0002-3312-6334 ; 0000-0002-8992-7456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382539/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382539/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37507383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Meichao</creatorcontrib><creatorcontrib>Meng, Yiling</creatorcontrib><creatorcontrib>Ying, Yingxia</creatorcontrib><creatorcontrib>Zhou, Pingting</creatorcontrib><creatorcontrib>Zhang, Suning</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><title>Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells</title><title>Cell death discovery</title><addtitle>Cell Death Discov</addtitle><addtitle>Cell Death Discov</addtitle><description>The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.</description><subject>631/532/1542</subject><subject>631/80/83</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell differentiation</subject><subject>Granulocyte colony-stimulating factor</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Leukocytes (neutrophilic)</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Monocytes</subject><subject>Neutrophils</subject><subject>Overexpression</subject><subject>Phosphorylation</subject><subject>Progenitor cells</subject><subject>Stat3 protein</subject><subject>Stat5 protein</subject><subject>Stem Cells</subject><issn>2058-7716</issn><issn>2058-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kk1vFDEMhiMEotXSP8ABjcSFy5RMPibJCVUV0EqVOHR7jjKJs81qdrIk2Ur775vZLaXlwMlW_Pi1Yxuhjx0-7zCVXzPrGMEtJrTFHRe83b9BpwRz2QrR9W9f-CfoLOc1xjPGhKTv0QkVHAsq6Sm6u4URbAkP0JjZmBLi1ETf3C4vlrQxkzt4vHHBFlMgN-UeGl-9GdrsYYzBNdsUVzCFElNjYRzzB_TOmzHD2ZNdoLsf35eXV-3Nr5_Xlxc3reWsK60demUxWKkcEeC8Eb33UnlSW8WMSMOU7zG3mHmlOBDVD952nFpZOeUHukDXR10XzVpvU9iYtNfRBH14iGmlTSrBjqCZrWKc95TW2pQOA0jnBskGJ0Cx-r5A345a292wAWdhKsmMr0RfR6Zwr1fxQc_rIJyqqvDlSSHF3zvIRW9CnudhJoi7rIlkDCta8Yp-_gddx12a6qxmihJGhOCVIkfKpphzAv_cTYcPZfXxCnS9An24Ar2vSZ9e_uM55c_OK0CPQK6haQXpb-3_yD4CtB29Fw</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Zhang, Meichao</creator><creator>Meng, Yiling</creator><creator>Ying, Yingxia</creator><creator>Zhou, Pingting</creator><creator>Zhang, Suning</creator><creator>Fang, Yong</creator><creator>Yao, Yuan</creator><creator>Li, Dong</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-7613-3469</orcidid><orcidid>https://orcid.org/0000-0002-3312-6334</orcidid><orcidid>https://orcid.org/0000-0002-8992-7456</orcidid></search><sort><creationdate>20230728</creationdate><title>Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells</title><author>Zhang, Meichao ; Meng, Yiling ; Ying, Yingxia ; Zhou, Pingting ; Zhang, Suning ; Fang, Yong ; Yao, Yuan ; Li, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/532/1542</topic><topic>631/80/83</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell differentiation</topic><topic>Granulocyte colony-stimulating factor</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Leukocytes (neutrophilic)</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Monocytes</topic><topic>Neutrophils</topic><topic>Overexpression</topic><topic>Phosphorylation</topic><topic>Progenitor cells</topic><topic>Stat3 protein</topic><topic>Stat5 protein</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Meichao</creatorcontrib><creatorcontrib>Meng, Yiling</creatorcontrib><creatorcontrib>Ying, Yingxia</creatorcontrib><creatorcontrib>Zhou, Pingting</creatorcontrib><creatorcontrib>Zhang, Suning</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell death discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Meichao</au><au>Meng, Yiling</au><au>Ying, Yingxia</au><au>Zhou, Pingting</au><au>Zhang, Suning</au><au>Fang, Yong</au><au>Yao, Yuan</au><au>Li, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells</atitle><jtitle>Cell death discovery</jtitle><stitle>Cell Death Discov</stitle><addtitle>Cell Death Discov</addtitle><date>2023-07-28</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>274</spage><epage>274</epage><pages>274-274</pages><artnum>274</artnum><issn>2058-7716</issn><eissn>2058-7716</eissn><abstract>The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37507383</pmid><doi>10.1038/s41420-023-01575-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0006-7613-3469</orcidid><orcidid>https://orcid.org/0000-0002-3312-6334</orcidid><orcidid>https://orcid.org/0000-0002-8992-7456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7716
ispartof Cell death discovery, 2023-07, Vol.9 (1), p.274-274, Article 274
issn 2058-7716
2058-7716
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4c49f55633c5433bbe8ddb84bd7e9456
source PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/532/1542
631/80/83
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell differentiation
Granulocyte colony-stimulating factor
Granulocyte-macrophage colony-stimulating factor
Leukocytes (neutrophilic)
Life Sciences
Macrophages
Monocytes
Neutrophils
Overexpression
Phosphorylation
Progenitor cells
Stat3 protein
Stat5 protein
Stem Cells
title Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20activation%20of%20STAT3%20and%20STAT5%20dictates%20the%20fate%20of%20myeloid%20progenitor%20cells&rft.jtitle=Cell%20death%20discovery&rft.au=Zhang,%20Meichao&rft.date=2023-07-28&rft.volume=9&rft.issue=1&rft.spage=274&rft.epage=274&rft.pages=274-274&rft.artnum=274&rft.issn=2058-7716&rft.eissn=2058-7716&rft_id=info:doi/10.1038/s41420-023-01575-y&rft_dat=%3Cproquest_doaj_%3E2844093038%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-cb69c0ec89d27edfa76ff89f20150428a49f605c04f995e296bfc153c86ff9fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2843242775&rft_id=info:pmid/37507383&rfr_iscdi=true