Loading…

Atomic model of vesicular stomatitis virus and mechanism of assembly

Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid prot...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-10, Vol.13 (1), p.5980-13, Article 5980
Main Authors: Zhou, Kang, Si, Zhu, Ge, Peng, Tsao, Jun, Luo, Ming, Zhou, Z. Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63
cites cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63
container_end_page 13
container_issue 1
container_start_page 5980
container_title Nature communications
container_volume 13
creator Zhou, Kang
Si, Zhu
Ge, Peng
Tsao, Jun
Luo, Ming
Zhou, Z. Hong
description Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components. Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.
doi_str_mv 10.1038/s41467-022-33664-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05</doaj_id><sourcerecordid>2723813135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa0KBIjyBThUkXrhkmJ7HCe5VEIUWiSkXuBsOfZ48SqJqZ2sxLevd0P50wO-2PK8-dlvHiGnjH5jFJrzJJiQdUk5LwGkFKX4RI44FaxkNYe9N-dDcpLSmuYFLWuEOCCHIDmTLdAj8uNiCoM3xRAs9kVwxQaTN3OvY5FyRU9-8qnY-DinQo-2GNA86NGnYavVKeHQ9U-fyb7TfcKT5_2Y3F9f3V3-Km9__7y5vLgtTSXoVIKDmnPHeFNVhlPrWmsdUGtrSjvATjIDdSUsirZ2XOrKNtDSjlHZtGhQwjG5Wbg26LV6jH7Q8UkF7dXuIsSV0nHypkcljNBV7bTuBApmM8lK1qEBZqnuaJVZ3xfW49wNaA2OU9T9O-j7yugf1CpsVFuJNhvIgLNnQAx_ZkyTGnwy2Pd6xDAnxfPoGwYMttKv_0nXYY5jHtVOxXMsdOuOLyoTQ0oR3ctnGFXbzNWSucqZq13mSuSmL29tvLT8SzgLYBGkXBpXGF_f_gD7F13AtyU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723291806</pqid></control><display><type>article</type><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</creator><creatorcontrib>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</creatorcontrib><description>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components. Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33664-4</identifier><identifier>PMID: 36216930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 147/28 ; 631/326/596 ; 631/326/596/2148 ; 631/535/1258/1259 ; Animals ; Assembling ; Assembly ; Crystal structure ; Electron microscopy ; Genomics ; Glycoproteins ; Humanities and Social Sciences ; Influenza ; Matrix protein ; Membranes ; Molecular interactions ; multidisciplinary ; Nucleocapsid Proteins - metabolism ; Nucleocapsids ; Oligomerization ; Packaging ; Proteins ; Rabies ; RNA ; RNA viruses ; RNA, Viral - metabolism ; Science ; Science (multidisciplinary) ; Stoichiometry ; Stomatitis ; Vesicular Stomatitis ; Vesicular stomatitis Indiana virus - genetics ; Vesiculovirus - genetics ; Virions ; Virus Assembly ; Viruses</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5980-13, Article 5980</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</citedby><cites>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</cites><orcidid>0000-0003-1766-3487 ; 0000-0002-2661-8226 ; 0000-0002-8373-4717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2723291806?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2723291806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36216930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Si, Zhu</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Tsao, Jun</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Zhou, Z. Hong</creatorcontrib><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components. Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</description><subject>147/143</subject><subject>147/28</subject><subject>631/326/596</subject><subject>631/326/596/2148</subject><subject>631/535/1258/1259</subject><subject>Animals</subject><subject>Assembling</subject><subject>Assembly</subject><subject>Crystal structure</subject><subject>Electron microscopy</subject><subject>Genomics</subject><subject>Glycoproteins</subject><subject>Humanities and Social Sciences</subject><subject>Influenza</subject><subject>Matrix protein</subject><subject>Membranes</subject><subject>Molecular interactions</subject><subject>multidisciplinary</subject><subject>Nucleocapsid Proteins - metabolism</subject><subject>Nucleocapsids</subject><subject>Oligomerization</subject><subject>Packaging</subject><subject>Proteins</subject><subject>Rabies</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>RNA, Viral - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stoichiometry</subject><subject>Stomatitis</subject><subject>Vesicular Stomatitis</subject><subject>Vesicular stomatitis Indiana virus - genetics</subject><subject>Vesiculovirus - genetics</subject><subject>Virions</subject><subject>Virus Assembly</subject><subject>Viruses</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9P3DAQxa0KBIjyBThUkXrhkmJ7HCe5VEIUWiSkXuBsOfZ48SqJqZ2sxLevd0P50wO-2PK8-dlvHiGnjH5jFJrzJJiQdUk5LwGkFKX4RI44FaxkNYe9N-dDcpLSmuYFLWuEOCCHIDmTLdAj8uNiCoM3xRAs9kVwxQaTN3OvY5FyRU9-8qnY-DinQo-2GNA86NGnYavVKeHQ9U-fyb7TfcKT5_2Y3F9f3V3-Km9__7y5vLgtTSXoVIKDmnPHeFNVhlPrWmsdUGtrSjvATjIDdSUsirZ2XOrKNtDSjlHZtGhQwjG5Wbg26LV6jH7Q8UkF7dXuIsSV0nHypkcljNBV7bTuBApmM8lK1qEBZqnuaJVZ3xfW49wNaA2OU9T9O-j7yugf1CpsVFuJNhvIgLNnQAx_ZkyTGnwy2Pd6xDAnxfPoGwYMttKv_0nXYY5jHtVOxXMsdOuOLyoTQ0oR3ctnGFXbzNWSucqZq13mSuSmL29tvLT8SzgLYBGkXBpXGF_f_gD7F13AtyU</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Zhou, Kang</creator><creator>Si, Zhu</creator><creator>Ge, Peng</creator><creator>Tsao, Jun</creator><creator>Luo, Ming</creator><creator>Zhou, Z. Hong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1766-3487</orcidid><orcidid>https://orcid.org/0000-0002-2661-8226</orcidid><orcidid>https://orcid.org/0000-0002-8373-4717</orcidid></search><sort><creationdate>20221010</creationdate><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><author>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>147/143</topic><topic>147/28</topic><topic>631/326/596</topic><topic>631/326/596/2148</topic><topic>631/535/1258/1259</topic><topic>Animals</topic><topic>Assembling</topic><topic>Assembly</topic><topic>Crystal structure</topic><topic>Electron microscopy</topic><topic>Genomics</topic><topic>Glycoproteins</topic><topic>Humanities and Social Sciences</topic><topic>Influenza</topic><topic>Matrix protein</topic><topic>Membranes</topic><topic>Molecular interactions</topic><topic>multidisciplinary</topic><topic>Nucleocapsid Proteins - metabolism</topic><topic>Nucleocapsids</topic><topic>Oligomerization</topic><topic>Packaging</topic><topic>Proteins</topic><topic>Rabies</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>RNA, Viral - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stoichiometry</topic><topic>Stomatitis</topic><topic>Vesicular Stomatitis</topic><topic>Vesicular stomatitis Indiana virus - genetics</topic><topic>Vesiculovirus - genetics</topic><topic>Virions</topic><topic>Virus Assembly</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Si, Zhu</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Tsao, Jun</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Zhou, Z. Hong</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kang</au><au>Si, Zhu</au><au>Ge, Peng</au><au>Tsao, Jun</au><au>Luo, Ming</au><au>Zhou, Z. Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic model of vesicular stomatitis virus and mechanism of assembly</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-10-10</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5980</spage><epage>13</epage><pages>5980-13</pages><artnum>5980</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components. Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36216930</pmid><doi>10.1038/s41467-022-33664-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1766-3487</orcidid><orcidid>https://orcid.org/0000-0002-2661-8226</orcidid><orcidid>https://orcid.org/0000-0002-8373-4717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-10, Vol.13 (1), p.5980-13, Article 5980
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05
source Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/143
147/28
631/326/596
631/326/596/2148
631/535/1258/1259
Animals
Assembling
Assembly
Crystal structure
Electron microscopy
Genomics
Glycoproteins
Humanities and Social Sciences
Influenza
Matrix protein
Membranes
Molecular interactions
multidisciplinary
Nucleocapsid Proteins - metabolism
Nucleocapsids
Oligomerization
Packaging
Proteins
Rabies
RNA
RNA viruses
RNA, Viral - metabolism
Science
Science (multidisciplinary)
Stoichiometry
Stomatitis
Vesicular Stomatitis
Vesicular stomatitis Indiana virus - genetics
Vesiculovirus - genetics
Virions
Virus Assembly
Viruses
title Atomic model of vesicular stomatitis virus and mechanism of assembly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20model%20of%20vesicular%20stomatitis%20virus%20and%20mechanism%20of%20assembly&rft.jtitle=Nature%20communications&rft.au=Zhou,%20Kang&rft.date=2022-10-10&rft.volume=13&rft.issue=1&rft.spage=5980&rft.epage=13&rft.pages=5980-13&rft.artnum=5980&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33664-4&rft_dat=%3Cproquest_doaj_%3E2723813135%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723291806&rft_id=info:pmid/36216930&rfr_iscdi=true