Loading…
Atomic model of vesicular stomatitis virus and mechanism of assembly
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid prot...
Saved in:
Published in: | Nature communications 2022-10, Vol.13 (1), p.5980-13, Article 5980 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 5980 |
container_title | Nature communications |
container_volume | 13 |
creator | Zhou, Kang Si, Zhu Ge, Peng Tsao, Jun Luo, Ming Zhou, Z. Hong |
description | Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly. |
doi_str_mv | 10.1038/s41467-022-33664-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05</doaj_id><sourcerecordid>2723813135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa0KBIjyBThUkXrhkmJ7HCe5VEIUWiSkXuBsOfZ48SqJqZ2sxLevd0P50wO-2PK8-dlvHiGnjH5jFJrzJJiQdUk5LwGkFKX4RI44FaxkNYe9N-dDcpLSmuYFLWuEOCCHIDmTLdAj8uNiCoM3xRAs9kVwxQaTN3OvY5FyRU9-8qnY-DinQo-2GNA86NGnYavVKeHQ9U-fyb7TfcKT5_2Y3F9f3V3-Km9__7y5vLgtTSXoVIKDmnPHeFNVhlPrWmsdUGtrSjvATjIDdSUsirZ2XOrKNtDSjlHZtGhQwjG5Wbg26LV6jH7Q8UkF7dXuIsSV0nHypkcljNBV7bTuBApmM8lK1qEBZqnuaJVZ3xfW49wNaA2OU9T9O-j7yugf1CpsVFuJNhvIgLNnQAx_ZkyTGnwy2Pd6xDAnxfPoGwYMttKv_0nXYY5jHtVOxXMsdOuOLyoTQ0oR3ctnGFXbzNWSucqZq13mSuSmL29tvLT8SzgLYBGkXBpXGF_f_gD7F13AtyU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723291806</pqid></control><display><type>article</type><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</creator><creatorcontrib>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</creatorcontrib><description>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-33664-4</identifier><identifier>PMID: 36216930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/143 ; 147/28 ; 631/326/596 ; 631/326/596/2148 ; 631/535/1258/1259 ; Animals ; Assembling ; Assembly ; Crystal structure ; Electron microscopy ; Genomics ; Glycoproteins ; Humanities and Social Sciences ; Influenza ; Matrix protein ; Membranes ; Molecular interactions ; multidisciplinary ; Nucleocapsid Proteins - metabolism ; Nucleocapsids ; Oligomerization ; Packaging ; Proteins ; Rabies ; RNA ; RNA viruses ; RNA, Viral - metabolism ; Science ; Science (multidisciplinary) ; Stoichiometry ; Stomatitis ; Vesicular Stomatitis ; Vesicular stomatitis Indiana virus - genetics ; Vesiculovirus - genetics ; Virions ; Virus Assembly ; Viruses</subject><ispartof>Nature communications, 2022-10, Vol.13 (1), p.5980-13, Article 5980</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</citedby><cites>FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</cites><orcidid>0000-0003-1766-3487 ; 0000-0002-2661-8226 ; 0000-0002-8373-4717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2723291806?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2723291806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,38514,43893,44588,53789,53791,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36216930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Si, Zhu</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Tsao, Jun</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Zhou, Z. Hong</creatorcontrib><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</description><subject>147/143</subject><subject>147/28</subject><subject>631/326/596</subject><subject>631/326/596/2148</subject><subject>631/535/1258/1259</subject><subject>Animals</subject><subject>Assembling</subject><subject>Assembly</subject><subject>Crystal structure</subject><subject>Electron microscopy</subject><subject>Genomics</subject><subject>Glycoproteins</subject><subject>Humanities and Social Sciences</subject><subject>Influenza</subject><subject>Matrix protein</subject><subject>Membranes</subject><subject>Molecular interactions</subject><subject>multidisciplinary</subject><subject>Nucleocapsid Proteins - metabolism</subject><subject>Nucleocapsids</subject><subject>Oligomerization</subject><subject>Packaging</subject><subject>Proteins</subject><subject>Rabies</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>RNA, Viral - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stoichiometry</subject><subject>Stomatitis</subject><subject>Vesicular Stomatitis</subject><subject>Vesicular stomatitis Indiana virus - genetics</subject><subject>Vesiculovirus - genetics</subject><subject>Virions</subject><subject>Virus Assembly</subject><subject>Viruses</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9P3DAQxa0KBIjyBThUkXrhkmJ7HCe5VEIUWiSkXuBsOfZ48SqJqZ2sxLevd0P50wO-2PK8-dlvHiGnjH5jFJrzJJiQdUk5LwGkFKX4RI44FaxkNYe9N-dDcpLSmuYFLWuEOCCHIDmTLdAj8uNiCoM3xRAs9kVwxQaTN3OvY5FyRU9-8qnY-DinQo-2GNA86NGnYavVKeHQ9U-fyb7TfcKT5_2Y3F9f3V3-Km9__7y5vLgtTSXoVIKDmnPHeFNVhlPrWmsdUGtrSjvATjIDdSUsirZ2XOrKNtDSjlHZtGhQwjG5Wbg26LV6jH7Q8UkF7dXuIsSV0nHypkcljNBV7bTuBApmM8lK1qEBZqnuaJVZ3xfW49wNaA2OU9T9O-j7yugf1CpsVFuJNhvIgLNnQAx_ZkyTGnwy2Pd6xDAnxfPoGwYMttKv_0nXYY5jHtVOxXMsdOuOLyoTQ0oR3ctnGFXbzNWSucqZq13mSuSmL29tvLT8SzgLYBGkXBpXGF_f_gD7F13AtyU</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Zhou, Kang</creator><creator>Si, Zhu</creator><creator>Ge, Peng</creator><creator>Tsao, Jun</creator><creator>Luo, Ming</creator><creator>Zhou, Z. Hong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1766-3487</orcidid><orcidid>https://orcid.org/0000-0002-2661-8226</orcidid><orcidid>https://orcid.org/0000-0002-8373-4717</orcidid></search><sort><creationdate>20221010</creationdate><title>Atomic model of vesicular stomatitis virus and mechanism of assembly</title><author>Zhou, Kang ; Si, Zhu ; Ge, Peng ; Tsao, Jun ; Luo, Ming ; Zhou, Z. Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>147/143</topic><topic>147/28</topic><topic>631/326/596</topic><topic>631/326/596/2148</topic><topic>631/535/1258/1259</topic><topic>Animals</topic><topic>Assembling</topic><topic>Assembly</topic><topic>Crystal structure</topic><topic>Electron microscopy</topic><topic>Genomics</topic><topic>Glycoproteins</topic><topic>Humanities and Social Sciences</topic><topic>Influenza</topic><topic>Matrix protein</topic><topic>Membranes</topic><topic>Molecular interactions</topic><topic>multidisciplinary</topic><topic>Nucleocapsid Proteins - metabolism</topic><topic>Nucleocapsids</topic><topic>Oligomerization</topic><topic>Packaging</topic><topic>Proteins</topic><topic>Rabies</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>RNA, Viral - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stoichiometry</topic><topic>Stomatitis</topic><topic>Vesicular Stomatitis</topic><topic>Vesicular stomatitis Indiana virus - genetics</topic><topic>Vesiculovirus - genetics</topic><topic>Virions</topic><topic>Virus Assembly</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kang</creatorcontrib><creatorcontrib>Si, Zhu</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Tsao, Jun</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Zhou, Z. Hong</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kang</au><au>Si, Zhu</au><au>Ge, Peng</au><au>Tsao, Jun</au><au>Luo, Ming</au><au>Zhou, Z. Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic model of vesicular stomatitis virus and mechanism of assembly</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-10-10</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>5980</spage><epage>13</epage><pages>5980-13</pages><artnum>5980</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Zhou and Si et al. used cryogenic electron microscopy and tomography to delineate the molecular interactions among genomic RNA, nucleocapsid protein, matrix protein and glycoprotein in vesicular stomatitis virus and suggest a model of assembly.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36216930</pmid><doi>10.1038/s41467-022-33664-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1766-3487</orcidid><orcidid>https://orcid.org/0000-0002-2661-8226</orcidid><orcidid>https://orcid.org/0000-0002-8373-4717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-10, Vol.13 (1), p.5980-13, Article 5980 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4c4a57faab4e41dd83d61bec31d0ab05 |
source | Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/143 147/28 631/326/596 631/326/596/2148 631/535/1258/1259 Animals Assembling Assembly Crystal structure Electron microscopy Genomics Glycoproteins Humanities and Social Sciences Influenza Matrix protein Membranes Molecular interactions multidisciplinary Nucleocapsid Proteins - metabolism Nucleocapsids Oligomerization Packaging Proteins Rabies RNA RNA viruses RNA, Viral - metabolism Science Science (multidisciplinary) Stoichiometry Stomatitis Vesicular Stomatitis Vesicular stomatitis Indiana virus - genetics Vesiculovirus - genetics Virions Virus Assembly Viruses |
title | Atomic model of vesicular stomatitis virus and mechanism of assembly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20model%20of%20vesicular%20stomatitis%20virus%20and%20mechanism%20of%20assembly&rft.jtitle=Nature%20communications&rft.au=Zhou,%20Kang&rft.date=2022-10-10&rft.volume=13&rft.issue=1&rft.spage=5980&rft.epage=13&rft.pages=5980-13&rft.artnum=5980&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-33664-4&rft_dat=%3Cproquest_doaj_%3E2723813135%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-3f3722f12855c20df9ddf30dd700b3eb61c3754de497f26a5d8390b10689ece63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723291806&rft_id=info:pmid/36216930&rfr_iscdi=true |