Loading…
Beyond the HLA polymorphism: A complex pattern of genetic susceptibility to pemphigus
Pemphigus is a group of autoimmune bullous skin diseases that result in significant morbidity. As for other multifactorial autoimmune disorders, environmental factors may trigger the disease in genetically susceptible individuals. The goals of this review are to summarize the state of knowledge abou...
Saved in:
Published in: | Genetics and molecular biology 2020-01, Vol.43 (3), p.e20190369-e20190369 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pemphigus is a group of autoimmune bullous skin diseases that result in
significant morbidity. As for other multifactorial autoimmune disorders,
environmental factors may trigger the disease in genetically susceptible
individuals. The goals of this review are to summarize the state of knowledge
about the genetic variation that may affect the susceptibility and pathogenesis
of pemphigus vulgaris and pemphigus foliaceus – both the endemic and the
sporadic forms –, to compare and discuss the possible meaning of the
associations reported, and to propose recommendations for new research
initiatives. Understanding how genetic variants translate into pathogenic
mechanisms and phenotypes remains a mystery for most of the polymorphisms that
contribute to disease susceptibility. However, genetic studies provide a strong
foundation for further developments in this field by generating testable
hypotheses. Currently, results still have limited influence on disease
prevention and prognosis, drug development, and clinical practice, although the
perspectives for future applications for the benefit of patients are
encouraging. Recommendations for the continued advancement of our understanding
as to the impact of genetic variation on pemphigus include these partially
overlapping goals: (1) Querying the functional effect of genetic variants on the
regulation of gene expression through their impact on the nucleotide sequence of
cis regulatory DNA elements such as promoters and enhancers, the splicing of
RNA, the structure of regulatory RNAs and proteins, binding of these regulatory
molecules to regulatory DNA elements, and alteration of epigenetic marks; (2)
identifying key cell types and cell states that are implicated in pemphigus
pathogenesis and explore their functional genomes; (3) integrating structural
and functional genomics data; (4) performing disease-progression longitudinal
studies to disclose the causal relationships between genetic and epigenetic
variation and intermediate disease phenotypes; (5) understanding the influence
of genetic and epigenetic variation in the response to treatment and the
severity of the disease; (6) exploring gene-gene and genotype-environment
interactions; (7) developing improved pemphigus-prone and non-prone animal
models that are appropriate for research about the mechanisms that link
genotypes to pemphigus. Achieving these goals will demand larger samples of
patients and controls and multisite collaborations. |
---|---|
ISSN: | 1415-4757 1678-4685 1678-4685 |
DOI: | 10.1590/1678-4685-gmb-2019-0369 |