Loading…
PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth
p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive. PBRM1 , the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a...
Saved in:
Published in: | Nature communications 2019-12, Vol.10 (1), p.5800-15, Article 5800 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 5800 |
container_title | Nature communications |
container_volume | 10 |
creator | Cai, Weijia Su, Liya Liao, Lili Liu, Zongzhi Z. Langbein, Lauren Dulaimi, Essel Testa, Joseph R. Uzzo, Robert G. Zhong, Zhijiu Jiang, Wei Yan, Qin Zhang, Qing Yang, Haifeng |
description | p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive.
PBRM1
, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as
CDKN1A
(p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes.
Acetylation of p53 is critical for its transcriptional activity and its tumour suppressive function. Here, the authors show that PBRM1 is a reader protein for p53′s C-terminal domain acetylation on lysine 382 through its bromodomain 4 and that mutations in this domain leads to compromised tumour suppressive function and renal tumour growth. |
doi_str_mv | 10.1038/s41467-019-13608-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4c56454ffebd47ce98598764f25ff35c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c56454ffebd47ce98598764f25ff35c</doaj_id><sourcerecordid>2329323918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBk7Ni5IEHFR6VFIARna-LY26yycbAd0P57vE0pLQcsy7Zm3nns8VsUT4G9BIbqVeTAG1kxaCvAhqkKHhSnNeNQgazx4Z3zSXEe447lgS0ozh8XJwiqQcbkabH58vbrJyjJpFhSnuUssBwPcZhsRcamw0hp8FMZLPU2lMmXcZnnYGPMoYnGMi17H8pt8L_S1ZPikaMx2vOb_az4_v7dt4uP1ebzh8uLN5vKCM5SRQqJ884AA4XYM9s76_JKBNSwvuGIkgCdtK3BTgppOPSCOg6dyz23eFZcrtze007PYdhTOGhPg74O-LDVFNJgRqu5EQ0X3Dnb9Vwa2yrRKtlwVwvnUJjMer2y5qXb297YKQUa70HvZ6bhSm_9T920tQClMuDFDSD4H4uNSe-HaOw40mT9EnWNdSsRACFLn_8j3fkl5F9cVVgfDcqqelWZ4GMM1t0-Bpg-eq9X73X2Xl97r4_oZ3fbuC3543QW4CqIOTVtbfh793-wvwHkpbj-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329323918</pqid></control><display><type>article</type><title>PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cai, Weijia ; Su, Liya ; Liao, Lili ; Liu, Zongzhi Z. ; Langbein, Lauren ; Dulaimi, Essel ; Testa, Joseph R. ; Uzzo, Robert G. ; Zhong, Zhijiu ; Jiang, Wei ; Yan, Qin ; Zhang, Qing ; Yang, Haifeng</creator><creatorcontrib>Cai, Weijia ; Su, Liya ; Liao, Lili ; Liu, Zongzhi Z. ; Langbein, Lauren ; Dulaimi, Essel ; Testa, Joseph R. ; Uzzo, Robert G. ; Zhong, Zhijiu ; Jiang, Wei ; Yan, Qin ; Zhang, Qing ; Yang, Haifeng</creatorcontrib><description>p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive.
PBRM1
, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as
CDKN1A
(p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes.
Acetylation of p53 is critical for its transcriptional activity and its tumour suppressive function. Here, the authors show that PBRM1 is a reader protein for p53′s C-terminal domain acetylation on lysine 382 through its bromodomain 4 and that mutations in this domain leads to compromised tumour suppressive function and renal tumour growth.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-13608-1</identifier><identifier>PMID: 31863007</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/106 ; 13/109 ; 13/51 ; 13/89 ; 13/95 ; 38 ; 38/77 ; 38/88 ; 631/45 ; 631/45/611 ; 631/67 ; 631/67/589 ; 631/67/589/1588 ; 64 ; 64/60 ; Acetylation ; Animals ; Cancer ; Cell Line, Tumor ; Crosstalk ; Cyclin-dependent kinase inhibitor p21 ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Neoplastic ; Gene Knockout Techniques ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Kidney - pathology ; Kidney cancer ; Kidney Neoplasms - genetics ; Kidney Neoplasms - pathology ; Kidneys ; Lysine ; Lysine - metabolism ; Male ; Mice ; multidisciplinary ; Mutation ; p53 Protein ; Promoter Regions, Genetic ; Protein Binding - genetics ; Protein Domains - genetics ; Science ; Science (multidisciplinary) ; Transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Nature communications, 2019-12, Vol.10 (1), p.5800-15, Article 5800</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793</citedby><cites>FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793</cites><orcidid>0000-0002-6595-8995 ; 0000-0003-1469-8991 ; 0000-0003-1301-5175 ; 0000-0002-3007-5287 ; 0000-0003-4077-453X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2329323918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2329323918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31863007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Weijia</creatorcontrib><creatorcontrib>Su, Liya</creatorcontrib><creatorcontrib>Liao, Lili</creatorcontrib><creatorcontrib>Liu, Zongzhi Z.</creatorcontrib><creatorcontrib>Langbein, Lauren</creatorcontrib><creatorcontrib>Dulaimi, Essel</creatorcontrib><creatorcontrib>Testa, Joseph R.</creatorcontrib><creatorcontrib>Uzzo, Robert G.</creatorcontrib><creatorcontrib>Zhong, Zhijiu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Qin</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Yang, Haifeng</creatorcontrib><title>PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive.
PBRM1
, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as
CDKN1A
(p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes.
Acetylation of p53 is critical for its transcriptional activity and its tumour suppressive function. Here, the authors show that PBRM1 is a reader protein for p53′s C-terminal domain acetylation on lysine 382 through its bromodomain 4 and that mutations in this domain leads to compromised tumour suppressive function and renal tumour growth.</description><subject>13</subject><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>38</subject><subject>38/77</subject><subject>38/88</subject><subject>631/45</subject><subject>631/45/611</subject><subject>631/67</subject><subject>631/67/589</subject><subject>631/67/589/1588</subject><subject>64</subject><subject>64/60</subject><subject>Acetylation</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Crosstalk</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockout Techniques</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kidney - pathology</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - pathology</subject><subject>Kidneys</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>p53 Protein</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding - genetics</subject><subject>Protein Domains - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEvBk7Ni5IEHFR6VFIARna-LY26yycbAd0P57vE0pLQcsy7Zm3nns8VsUT4G9BIbqVeTAG1kxaCvAhqkKHhSnNeNQgazx4Z3zSXEe447lgS0ozh8XJwiqQcbkabH58vbrJyjJpFhSnuUssBwPcZhsRcamw0hp8FMZLPU2lMmXcZnnYGPMoYnGMi17H8pt8L_S1ZPikaMx2vOb_az4_v7dt4uP1ebzh8uLN5vKCM5SRQqJ884AA4XYM9s76_JKBNSwvuGIkgCdtK3BTgppOPSCOg6dyz23eFZcrtze007PYdhTOGhPg74O-LDVFNJgRqu5EQ0X3Dnb9Vwa2yrRKtlwVwvnUJjMer2y5qXb297YKQUa70HvZ6bhSm_9T920tQClMuDFDSD4H4uNSe-HaOw40mT9EnWNdSsRACFLn_8j3fkl5F9cVVgfDcqqelWZ4GMM1t0-Bpg-eq9X73X2Xl97r4_oZ3fbuC3543QW4CqIOTVtbfh793-wvwHkpbj-</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Cai, Weijia</creator><creator>Su, Liya</creator><creator>Liao, Lili</creator><creator>Liu, Zongzhi Z.</creator><creator>Langbein, Lauren</creator><creator>Dulaimi, Essel</creator><creator>Testa, Joseph R.</creator><creator>Uzzo, Robert G.</creator><creator>Zhong, Zhijiu</creator><creator>Jiang, Wei</creator><creator>Yan, Qin</creator><creator>Zhang, Qing</creator><creator>Yang, Haifeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6595-8995</orcidid><orcidid>https://orcid.org/0000-0003-1469-8991</orcidid><orcidid>https://orcid.org/0000-0003-1301-5175</orcidid><orcidid>https://orcid.org/0000-0002-3007-5287</orcidid><orcidid>https://orcid.org/0000-0003-4077-453X</orcidid></search><sort><creationdate>20191220</creationdate><title>PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth</title><author>Cai, Weijia ; Su, Liya ; Liao, Lili ; Liu, Zongzhi Z. ; Langbein, Lauren ; Dulaimi, Essel ; Testa, Joseph R. ; Uzzo, Robert G. ; Zhong, Zhijiu ; Jiang, Wei ; Yan, Qin ; Zhang, Qing ; Yang, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>38</topic><topic>38/77</topic><topic>38/88</topic><topic>631/45</topic><topic>631/45/611</topic><topic>631/67</topic><topic>631/67/589</topic><topic>631/67/589/1588</topic><topic>64</topic><topic>64/60</topic><topic>Acetylation</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Crosstalk</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockout Techniques</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kidney - pathology</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - pathology</topic><topic>Kidneys</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>p53 Protein</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding - genetics</topic><topic>Protein Domains - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Weijia</creatorcontrib><creatorcontrib>Su, Liya</creatorcontrib><creatorcontrib>Liao, Lili</creatorcontrib><creatorcontrib>Liu, Zongzhi Z.</creatorcontrib><creatorcontrib>Langbein, Lauren</creatorcontrib><creatorcontrib>Dulaimi, Essel</creatorcontrib><creatorcontrib>Testa, Joseph R.</creatorcontrib><creatorcontrib>Uzzo, Robert G.</creatorcontrib><creatorcontrib>Zhong, Zhijiu</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Qin</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Yang, Haifeng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Weijia</au><au>Su, Liya</au><au>Liao, Lili</au><au>Liu, Zongzhi Z.</au><au>Langbein, Lauren</au><au>Dulaimi, Essel</au><au>Testa, Joseph R.</au><au>Uzzo, Robert G.</au><au>Zhong, Zhijiu</au><au>Jiang, Wei</au><au>Yan, Qin</au><au>Zhang, Qing</au><au>Yang, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-12-20</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>5800</spage><epage>15</epage><pages>5800-15</pages><artnum>5800</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive.
PBRM1
, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as
CDKN1A
(p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes.
Acetylation of p53 is critical for its transcriptional activity and its tumour suppressive function. Here, the authors show that PBRM1 is a reader protein for p53′s C-terminal domain acetylation on lysine 382 through its bromodomain 4 and that mutations in this domain leads to compromised tumour suppressive function and renal tumour growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31863007</pmid><doi>10.1038/s41467-019-13608-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6595-8995</orcidid><orcidid>https://orcid.org/0000-0003-1469-8991</orcidid><orcidid>https://orcid.org/0000-0003-1301-5175</orcidid><orcidid>https://orcid.org/0000-0002-3007-5287</orcidid><orcidid>https://orcid.org/0000-0003-4077-453X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-12, Vol.10 (1), p.5800-15, Article 5800 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4c56454ffebd47ce98598764f25ff35c |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/1 13/106 13/109 13/51 13/89 13/95 38 38/77 38/88 631/45 631/45/611 631/67 631/67/589 631/67/589/1588 64 64/60 Acetylation Animals Cancer Cell Line, Tumor Crosstalk Cyclin-dependent kinase inhibitor p21 Cyclin-Dependent Kinase Inhibitor p21 - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Regulation, Neoplastic Gene Knockout Techniques HEK293 Cells Humanities and Social Sciences Humans Kidney - pathology Kidney cancer Kidney Neoplasms - genetics Kidney Neoplasms - pathology Kidneys Lysine Lysine - metabolism Male Mice multidisciplinary Mutation p53 Protein Promoter Regions, Genetic Protein Binding - genetics Protein Domains - genetics Science Science (multidisciplinary) Transcription Transcription Factors - genetics Transcription Factors - metabolism Tumor suppressor genes Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumors Xenograft Model Antitumor Assays |
title | PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PBRM1%20acts%20as%20a%20p53%20lysine-acetylation%20reader%20to%20suppress%20renal%20tumor%20growth&rft.jtitle=Nature%20communications&rft.au=Cai,%20Weijia&rft.date=2019-12-20&rft.volume=10&rft.issue=1&rft.spage=5800&rft.epage=15&rft.pages=5800-15&rft.artnum=5800&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-13608-1&rft_dat=%3Cproquest_doaj_%3E2329323918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-a83a44bc101833d0edfef0edaa1a60d64337a13f7e9c3b757c41d5ab41bf46793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329323918&rft_id=info:pmid/31863007&rfr_iscdi=true |