Loading…

Fatigue Life Convergence of Offshore Wind Turbine Support Structure According to Wind Measurement Period

This paper investigated the fatigue life of offshore wind turbine (OWT) support structures. For this purpose, a 3 MW-capacity typical wind turbine is investigated using time-domain finite element simulations. In numerical simulations, different stochastic wind models corresponding to different accum...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-04, Vol.16 (7), p.3199
Main Authors: Lee, Gee-Nam, Ngo, Duc-Vu, Lee, Sang-Il, Kim, Dong-Hyawn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigated the fatigue life of offshore wind turbine (OWT) support structures. For this purpose, a 3 MW-capacity typical wind turbine is investigated using time-domain finite element simulations. In numerical simulations, different stochastic wind models corresponding to different accumulation periods are applied. Then, the stress-based fatigue life is estimated following the rain-flow counting algorithm and Palmgren-Miner linearly cumulative damage rule. The study also addresses the joint distribution of loads at the site of interest. Generally, the study emphasizes the significance of the long-term distribution of the applied environment loads and its influence on the fatigue life of OWT’s substructures. The results imply that the wind measurement period is directly linked to the fatigue life of offshore wind turbine support structures. Accordingly, its fatigue life is significantly reduced at the 25-year accumulative period of wind. Therefore, this study recommends that a sufficient number of accumulative periods of wind and other environmental loads should be considered appropriately.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16073199