Loading…
Equipment-Free Fabrication of Thiolated Reduced Graphene Oxide Langmuir-Blodgett Films: A Novel Approach for Versatile Surface Engineering
This research presents a novel method for the fabrication of mercapto reduced graphene oxide (m-RGO) Langmuir-Blodgett (LB) films without the need for specialized equipment. The conventional LB technique offers precise control over the deposition of thin films onto solid substrates, but its reliance...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2024-05, Vol.29 (11), p.2464 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research presents a novel method for the fabrication of mercapto reduced graphene oxide (m-RGO) Langmuir-Blodgett (LB) films without the need for specialized equipment. The conventional LB technique offers precise control over the deposition of thin films onto solid substrates, but its reliance on sophisticated instrumentation limits its accessibility. In this study, we demonstrate a simplified approach that circumvents the necessity for such equipment, thereby democratizing the production of m-RGO LB films. Thiolation of reduced graphene oxide (rGO) imparts enhanced stability and functionality to the resulting films, rendering them suitable for a wide range of applications in surface engineering, sensing, and catalysis. The fabricated m-RGO LB films exhibit favorable morphological, structural, and surface properties, as characterized by various analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, the performance of the m-RGO LB films is evaluated in terms of their surface wettability, electrochemical behavior, and chemical reactivity. The equipment-free fabrication approach presented herein offers a cost-effective and scalable route for the production of functionalized graphene-based thin films, thus broadening the scope for their utilization in diverse technological applications. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29112464 |