Loading…
Optimization of Feedback FET with Asymmetric Source Drain Doping Profile
A feedback field-effect transistor (FBFET) is a novel device that uses a positive feedback mechanism. FBFET has a high on-/off ratio and is expected to realize ideal switching characteristics through steep changes from off-state to on-state. In this paper, we propose and optimize FBFET devices with...
Saved in:
Published in: | Micromachines (Basel) 2022-03, Vol.13 (4), p.508 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A feedback field-effect transistor (FBFET) is a novel device that uses a positive feedback mechanism. FBFET has a high on-/off ratio and is expected to realize ideal switching characteristics through steep changes from off-state to on-state. In this paper, we propose and optimize FBFET devices with asymmetric source/drain doping concentrations. Additionally, we discuss the changes in electrical characteristics across various channel length and channel thickness conditions and compare them with those of FBFET with a symmetric source/drain. This shows that FBFET with an asymmetric source/drain has a higher on-/off ratio than FBFET with a symmetric source/drain. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi13040508 |