Loading…
Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China
Fine particulate matter (PM2.5) and respirable particulate matter (PM10) are two major air pollutants with toxic effects on the cardiovascular system. Hypertension, as a chronic noncommunicable cardiovascular disease, is also a risk factor for several diseases. We applied generalized linear models w...
Saved in:
Published in: | International journal of hypertension 2022-02, Vol.2022, p.7413115-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13 |
container_end_page | 11 |
container_issue | |
container_start_page | 7413115 |
container_title | International journal of hypertension |
container_volume | 2022 |
creator | Li, Chenwei Zhou, Xinye Huang, Kun Zhang, Xiaokang Gao, Yanfang |
description | Fine particulate matter (PM2.5) and respirable particulate matter (PM10) are two major air pollutants with toxic effects on the cardiovascular system. Hypertension, as a chronic noncommunicable cardiovascular disease, is also a risk factor for several diseases. We applied generalized linear models with a quasi-Poisson link to assess the effect of air pollution exposure on the number of daily admissions for patients with hypertension. In addition, we established a two-pollutant model to evaluate PM2.5 and PM10 hazard effect stability by adjusting the other gaseous pollutants. Results showed that during the study period, 24 h mean concentrations of ambient PM2.5 and PM10 at 38.17 and 59.84 μg/m3, respectively, and a total of 2,611 hypertension hospital admissions were recorded. Air pollution concentrations significantly affected the number of hospitalizations for hypertension approximately 2 months after exposure. For each 10 μg/m3 increase in PM2.5 and PM10 in single-pollutant models, the number of hospitalizations for hypertension increased by 7.92% (95% CI: 5.48% to 10.42%) and 4.46% (95% CI: 2.86% to 5.65%), respectively, at the lag day with the strongest effect. NO2, O3, CO, and SO2 had different significant effects on the number of hospitalizations over the same time period, and PM2.5 and PM10 still showed robust significant effects after adjustment of gas pollutants through a two-pollutant model. These findings may contribute to a better understanding of the health effects of ambient particulate matter. |
doi_str_mv | 10.1155/2022/7413115 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4cb11bb78c504e35bdacec1850d00016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697651812</galeid><doaj_id>oai_doaj_org_article_4cb11bb78c504e35bdacec1850d00016</doaj_id><sourcerecordid>A697651812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13</originalsourceid><addsrcrecordid>eNp9kt1r2zAUxc3YWEvXtz0Pw2AM1rT6sGT5pRDC1hQ61oftWcjSdaLiSJkkr2R__ZQ4y5oxJgtsXf3usXQ4RfEao0uMGbsiiJCrusI0r54VpwQ1aIJoQ54fvkV1UpzH-IDyoE2e4mVxQhkhFDXktNhMY_TaqmS9K1tIjwCuvFchWT30KkH5WaUEobz3fT_soJl3GlwKY4typpz7uLZJ9eXUrGyMuRzLzodyvllDSOC2ldK68ka5n0s_XJSzpXXqVfGiU32E8_37rPj26ePX2Xxy9-Xmdja9m2iOSZq0mLddzRtUa0AV6pCoGoFEzYBiapgAbWpqGlphXRHcaaOxEDXNCK5Z22F6VtyOusarB7kOdqXCRnpl5a7gw0LurtuDrHSLcdvWQjNUAWWtURqyHkMmu4d51roetdZDuwIz-tAfiR7vOLuUC_9D5iMRXoks8H4vEPz3AWKS2TENfa8c-CFKwmnFEK84zejbv9AHPwSXrdpSlHFOBflDLVS-gHWdz__VW1E55U3NGRZ4S13-g8qPgZXV3kFnc_2o4d2ThiWoPi2jHxMQj8GLEdTBxxigO5iBkdxGVG4jKvcRzfibpwYe4N-BzMCHEcgRMerR_l_uF4Ch6-c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633566382</pqid></control><display><type>article</type><title>Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><source>Coronavirus Research Database</source><creator>Li, Chenwei ; Zhou, Xinye ; Huang, Kun ; Zhang, Xiaokang ; Gao, Yanfang</creator><contributor>D Elia, Lanfranco ; Lanfranco D Elia</contributor><creatorcontrib>Li, Chenwei ; Zhou, Xinye ; Huang, Kun ; Zhang, Xiaokang ; Gao, Yanfang ; D Elia, Lanfranco ; Lanfranco D Elia</creatorcontrib><description>Fine particulate matter (PM2.5) and respirable particulate matter (PM10) are two major air pollutants with toxic effects on the cardiovascular system. Hypertension, as a chronic noncommunicable cardiovascular disease, is also a risk factor for several diseases. We applied generalized linear models with a quasi-Poisson link to assess the effect of air pollution exposure on the number of daily admissions for patients with hypertension. In addition, we established a two-pollutant model to evaluate PM2.5 and PM10 hazard effect stability by adjusting the other gaseous pollutants. Results showed that during the study period, 24 h mean concentrations of ambient PM2.5 and PM10 at 38.17 and 59.84 μg/m3, respectively, and a total of 2,611 hypertension hospital admissions were recorded. Air pollution concentrations significantly affected the number of hospitalizations for hypertension approximately 2 months after exposure. For each 10 μg/m3 increase in PM2.5 and PM10 in single-pollutant models, the number of hospitalizations for hypertension increased by 7.92% (95% CI: 5.48% to 10.42%) and 4.46% (95% CI: 2.86% to 5.65%), respectively, at the lag day with the strongest effect. NO2, O3, CO, and SO2 had different significant effects on the number of hospitalizations over the same time period, and PM2.5 and PM10 still showed robust significant effects after adjustment of gas pollutants through a two-pollutant model. These findings may contribute to a better understanding of the health effects of ambient particulate matter.</description><identifier>ISSN: 2090-0384</identifier><identifier>ISSN: 2090-0392</identifier><identifier>EISSN: 2090-0392</identifier><identifier>DOI: 10.1155/2022/7413115</identifier><identifier>PMID: 35223092</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Admission and discharge ; Air pollution ; Cardiovascular disease ; Computer centers ; Generalized linear models ; Hospitalization ; Hospitals ; Humidity ; Hypertension ; Outdoor air quality ; Patient admissions ; Pollutants ; Risk factors ; Software ; Time series</subject><ispartof>International journal of hypertension, 2022-02, Vol.2022, p.7413115-11</ispartof><rights>Copyright © 2022 Chenwei Li et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Chenwei Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Chenwei Li et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13</citedby><cites>FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13</cites><orcidid>0000-0003-3893-1532 ; 0000-0003-0894-5394 ; 0000-0003-2199-2398 ; 0000-0001-9218-2945 ; 0000-0002-8343-3754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633566382/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633566382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,38515,43894,44589,53790,53792,74283,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35223092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>D Elia, Lanfranco</contributor><contributor>Lanfranco D Elia</contributor><creatorcontrib>Li, Chenwei</creatorcontrib><creatorcontrib>Zhou, Xinye</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Zhang, Xiaokang</creatorcontrib><creatorcontrib>Gao, Yanfang</creatorcontrib><title>Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China</title><title>International journal of hypertension</title><addtitle>Int J Hypertens</addtitle><description>Fine particulate matter (PM2.5) and respirable particulate matter (PM10) are two major air pollutants with toxic effects on the cardiovascular system. Hypertension, as a chronic noncommunicable cardiovascular disease, is also a risk factor for several diseases. We applied generalized linear models with a quasi-Poisson link to assess the effect of air pollution exposure on the number of daily admissions for patients with hypertension. In addition, we established a two-pollutant model to evaluate PM2.5 and PM10 hazard effect stability by adjusting the other gaseous pollutants. Results showed that during the study period, 24 h mean concentrations of ambient PM2.5 and PM10 at 38.17 and 59.84 μg/m3, respectively, and a total of 2,611 hypertension hospital admissions were recorded. Air pollution concentrations significantly affected the number of hospitalizations for hypertension approximately 2 months after exposure. For each 10 μg/m3 increase in PM2.5 and PM10 in single-pollutant models, the number of hospitalizations for hypertension increased by 7.92% (95% CI: 5.48% to 10.42%) and 4.46% (95% CI: 2.86% to 5.65%), respectively, at the lag day with the strongest effect. NO2, O3, CO, and SO2 had different significant effects on the number of hospitalizations over the same time period, and PM2.5 and PM10 still showed robust significant effects after adjustment of gas pollutants through a two-pollutant model. These findings may contribute to a better understanding of the health effects of ambient particulate matter.</description><subject>Admission and discharge</subject><subject>Air pollution</subject><subject>Cardiovascular disease</subject><subject>Computer centers</subject><subject>Generalized linear models</subject><subject>Hospitalization</subject><subject>Hospitals</subject><subject>Humidity</subject><subject>Hypertension</subject><subject>Outdoor air quality</subject><subject>Patient admissions</subject><subject>Pollutants</subject><subject>Risk factors</subject><subject>Software</subject><subject>Time series</subject><issn>2090-0384</issn><issn>2090-0392</issn><issn>2090-0392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kt1r2zAUxc3YWEvXtz0Pw2AM1rT6sGT5pRDC1hQ61oftWcjSdaLiSJkkr2R__ZQ4y5oxJgtsXf3usXQ4RfEao0uMGbsiiJCrusI0r54VpwQ1aIJoQ54fvkV1UpzH-IDyoE2e4mVxQhkhFDXktNhMY_TaqmS9K1tIjwCuvFchWT30KkH5WaUEobz3fT_soJl3GlwKY4typpz7uLZJ9eXUrGyMuRzLzodyvllDSOC2ldK68ka5n0s_XJSzpXXqVfGiU32E8_37rPj26ePX2Xxy9-Xmdja9m2iOSZq0mLddzRtUa0AV6pCoGoFEzYBiapgAbWpqGlphXRHcaaOxEDXNCK5Z22F6VtyOusarB7kOdqXCRnpl5a7gw0LurtuDrHSLcdvWQjNUAWWtURqyHkMmu4d51roetdZDuwIz-tAfiR7vOLuUC_9D5iMRXoks8H4vEPz3AWKS2TENfa8c-CFKwmnFEK84zejbv9AHPwSXrdpSlHFOBflDLVS-gHWdz__VW1E55U3NGRZ4S13-g8qPgZXV3kFnc_2o4d2ThiWoPi2jHxMQj8GLEdTBxxigO5iBkdxGVG4jKvcRzfibpwYe4N-BzMCHEcgRMerR_l_uF4Ch6-c</recordid><startdate>20220217</startdate><enddate>20220217</enddate><creator>Li, Chenwei</creator><creator>Zhou, Xinye</creator><creator>Huang, Kun</creator><creator>Zhang, Xiaokang</creator><creator>Gao, Yanfang</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3893-1532</orcidid><orcidid>https://orcid.org/0000-0003-0894-5394</orcidid><orcidid>https://orcid.org/0000-0003-2199-2398</orcidid><orcidid>https://orcid.org/0000-0001-9218-2945</orcidid><orcidid>https://orcid.org/0000-0002-8343-3754</orcidid></search><sort><creationdate>20220217</creationdate><title>Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China</title><author>Li, Chenwei ; Zhou, Xinye ; Huang, Kun ; Zhang, Xiaokang ; Gao, Yanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Admission and discharge</topic><topic>Air pollution</topic><topic>Cardiovascular disease</topic><topic>Computer centers</topic><topic>Generalized linear models</topic><topic>Hospitalization</topic><topic>Hospitals</topic><topic>Humidity</topic><topic>Hypertension</topic><topic>Outdoor air quality</topic><topic>Patient admissions</topic><topic>Pollutants</topic><topic>Risk factors</topic><topic>Software</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenwei</creatorcontrib><creatorcontrib>Zhou, Xinye</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Zhang, Xiaokang</creatorcontrib><creatorcontrib>Gao, Yanfang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>International journal of hypertension</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenwei</au><au>Zhou, Xinye</au><au>Huang, Kun</au><au>Zhang, Xiaokang</au><au>Gao, Yanfang</au><au>D Elia, Lanfranco</au><au>Lanfranco D Elia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China</atitle><jtitle>International journal of hypertension</jtitle><addtitle>Int J Hypertens</addtitle><date>2022-02-17</date><risdate>2022</risdate><volume>2022</volume><spage>7413115</spage><epage>11</epage><pages>7413115-11</pages><issn>2090-0384</issn><issn>2090-0392</issn><eissn>2090-0392</eissn><abstract>Fine particulate matter (PM2.5) and respirable particulate matter (PM10) are two major air pollutants with toxic effects on the cardiovascular system. Hypertension, as a chronic noncommunicable cardiovascular disease, is also a risk factor for several diseases. We applied generalized linear models with a quasi-Poisson link to assess the effect of air pollution exposure on the number of daily admissions for patients with hypertension. In addition, we established a two-pollutant model to evaluate PM2.5 and PM10 hazard effect stability by adjusting the other gaseous pollutants. Results showed that during the study period, 24 h mean concentrations of ambient PM2.5 and PM10 at 38.17 and 59.84 μg/m3, respectively, and a total of 2,611 hypertension hospital admissions were recorded. Air pollution concentrations significantly affected the number of hospitalizations for hypertension approximately 2 months after exposure. For each 10 μg/m3 increase in PM2.5 and PM10 in single-pollutant models, the number of hospitalizations for hypertension increased by 7.92% (95% CI: 5.48% to 10.42%) and 4.46% (95% CI: 2.86% to 5.65%), respectively, at the lag day with the strongest effect. NO2, O3, CO, and SO2 had different significant effects on the number of hospitalizations over the same time period, and PM2.5 and PM10 still showed robust significant effects after adjustment of gas pollutants through a two-pollutant model. These findings may contribute to a better understanding of the health effects of ambient particulate matter.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35223092</pmid><doi>10.1155/2022/7413115</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3893-1532</orcidid><orcidid>https://orcid.org/0000-0003-0894-5394</orcidid><orcidid>https://orcid.org/0000-0003-2199-2398</orcidid><orcidid>https://orcid.org/0000-0001-9218-2945</orcidid><orcidid>https://orcid.org/0000-0002-8343-3754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-0384 |
ispartof | International journal of hypertension, 2022-02, Vol.2022, p.7413115-11 |
issn | 2090-0384 2090-0392 2090-0392 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4cb11bb78c504e35bdacec1850d00016 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest); Wiley Open Access; Coronavirus Research Database |
subjects | Admission and discharge Air pollution Cardiovascular disease Computer centers Generalized linear models Hospitalization Hospitals Humidity Hypertension Outdoor air quality Patient admissions Pollutants Risk factors Software Time series |
title | Association between Particulate Matter Pollution Concentration and Hospital Admissions for Hypertension in Ganzhou, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20between%20Particulate%20Matter%20Pollution%20Concentration%20and%20Hospital%20Admissions%20for%20Hypertension%20in%20Ganzhou,%20China&rft.jtitle=International%20journal%20of%20hypertension&rft.au=Li,%20Chenwei&rft.date=2022-02-17&rft.volume=2022&rft.spage=7413115&rft.epage=11&rft.pages=7413115-11&rft.issn=2090-0384&rft.eissn=2090-0392&rft_id=info:doi/10.1155/2022/7413115&rft_dat=%3Cgale_doaj_%3EA697651812%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-b16bf76907ce040f084980875e313d58ecd73d9341c421fcdc18873808175bf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633566382&rft_id=info:pmid/35223092&rft_galeid=A697651812&rfr_iscdi=true |